Photo AI

7. (a) Show that the equation 3sin² x + 7sin x = cos² x - 4 can be written in the form 4sin² x + 7sin x + 3 = 0 (b) Hence, solve, for 0 ≤ x < 360°, 3sin² x + 7sin x = cos² x - 4 giving your answers to 1 decimal place where appropriate. - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 3

Question icon

Question 6

7.-(a)-Show-that-the-equation--3sin²-x-+-7sin-x-=-cos²-x---4--can-be-written-in-the-form--4sin²-x-+-7sin-x-+-3-=-0-(b)-Hence,-solve,-for-0-≤-x-<-360°,--3sin²-x-+-7sin-x-=-cos²-x---4-giving-your-answers-to-1-decimal-place-where-appropriate.-Edexcel-A-Level Maths Pure-Question 6-2011-Paper 3.png

7. (a) Show that the equation 3sin² x + 7sin x = cos² x - 4 can be written in the form 4sin² x + 7sin x + 3 = 0 (b) Hence, solve, for 0 ≤ x < 360°, 3sin² x + 7si... show full transcript

Worked Solution & Example Answer:7. (a) Show that the equation 3sin² x + 7sin x = cos² x - 4 can be written in the form 4sin² x + 7sin x + 3 = 0 (b) Hence, solve, for 0 ≤ x < 360°, 3sin² x + 7sin x = cos² x - 4 giving your answers to 1 decimal place where appropriate. - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 3

Step 1

Show that the equation can be written in the form 4sin² x + 7sin x + 3 = 0

96%

114 rated

Answer

To start, we manipulate the original equation:

3sin2x+7sinx=cos2x43sin² x + 7sin x = cos² x - 4

Using the identity cos2x=1sin2xcos² x = 1 - sin² x, we replace cos2xcos² x:

3sin2x+7sinx=(1sin2x)43sin² x + 7sin x = (1 - sin² x) - 4

Now, rearranging the right side:

3sin2x+7sinx=sin2x33sin² x + 7sin x = -sin² x - 3

Combining like terms:

3sin2x+sin2x+7sinx+3=03sin² x + sin² x + 7sin x + 3 = 0

This gives:

4sin2x+7sinx+3=04sin² x + 7sin x + 3 = 0

Thus, we have shown the equation is in the required form.

Step 2

Hence, solve, for 0 ≤ x < 360°, 3sin² x + 7sin x = cos² x - 4

99%

104 rated

Answer

From part (a), we have transformed the equation to:

4sin2x+7sinx+3=04sin² x + 7sin x + 3 = 0

Letting y=sinxy = sin x, we can rewrite this as:

4y2+7y+3=04y² + 7y + 3 = 0

We apply the quadratic formula:

y=b±b24ac2ay = \frac{-b \pm \sqrt{b² - 4ac}}{2a}

Where a=4a = 4, b=7b = 7, and c=3c = 3:

Calculating the discriminant:

D=724×4×3=4948=1D = 7² - 4 \times 4 \times 3 = 49 - 48 = 1

Now substituting into the formula:

y=7±18=7±18y = \frac{-7 \pm \sqrt{1}}{8} = \frac{-7 \pm 1}{8}

This gives us:

y1=68=0.75y2=88=1y_1 = \frac{-6}{8} = -0.75 \\ y_2 = \frac{-8}{8} = -1

For y1=0.75y_1 = -0.75:

sinx=0.75sin x = -0.75

This occurs in the third and fourth quadrants. Using the inverse sine:

x=180°+arcsin(0.75)andx=360°arcsin(0.75)x = 180° + \arcsin(0.75) \quad \text{and} \quad x = 360° - \arcsin(0.75)

Calculating:

x180°+48.59°228.59°x360°48.59°311.41°x ≈ 180° + 48.59° ≈ 228.59° \\ x ≈ 360° - 48.59° ≈ 311.41°

For y2=1y_2 = -1, we find:

ightarrow x = 270°$$ Thus the solutions are: $$x ≈ 228.6°, 311.4°, 270°$$ Presenting the answers to one decimal place, we conclude:

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;