Photo AI

In the triangle $ABC$, $AB = 16 \text{ cm}, AC = 13 \text{ cm}, \angle ABC = 50^\circ$ and angle $BCA = x^\circ$ - Edexcel - A-Level Maths Pure - Question 3 - 2017 - Paper 3

Question icon

Question 3

In-the-triangle-$ABC$,-$AB-=-16-\text{-cm},-AC-=-13-\text{-cm},-\angle-ABC-=-50^\circ$-and-angle-$BCA-=-x^\circ$-Edexcel-A-Level Maths Pure-Question 3-2017-Paper 3.png

In the triangle $ABC$, $AB = 16 \text{ cm}, AC = 13 \text{ cm}, \angle ABC = 50^\circ$ and angle $BCA = x^\circ$. Find the two possible values for $x$, giving your a... show full transcript

Worked Solution & Example Answer:In the triangle $ABC$, $AB = 16 \text{ cm}, AC = 13 \text{ cm}, \angle ABC = 50^\circ$ and angle $BCA = x^\circ$ - Edexcel - A-Level Maths Pure - Question 3 - 2017 - Paper 3

Step 1

Find the value of $\sin x$ using the sine rule

96%

114 rated

Answer

Using the sine rule, we know that: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B} In this case, let:

  • a=16a = 16 cm (opposite to angle ACB=xACB = x)
  • b=13b = 13 cm (opposite to angle ABC=50ABC = 50^\circ)

Thus, 16sinx=13sin50\frac{16}{\sin x} = \frac{13}{\sin 50^\circ}

Rearranging gives: sinx=16×sin5013\sin x = 16 \times \frac{\sin 50^\circ}{13}

Step 2

Calculate $\sin 50^\circ$

99%

104 rated

Answer

Using a calculator, we find: sin500.7660\sin 50^\circ \approx 0.7660

Substituting this value in gives: sinx=16×0.7660130.9430\sin x = 16 \times \frac{0.7660}{13} \approx 0.9430

Step 3

Find possible values of $x$

96%

101 rated

Answer

Now, we need to determine the angle xx:

  • The first possible value of xx can be found using the inverse sine function: x=sin1(0.9430)70.5x = \sin^{-1}(0.9430) \approx 70.5^\circ
  • The second possible value of xx can be calculated as follows: x=18070.5=109.5x = 180^\circ - 70.5^\circ = 109.5^\circ

Thus, the two possible values for xx are approximately:

  • 70.570.5^\circ
  • 109.5109.5^\circ

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;