Photo AI

The finite region $S$, shown shaded in Figure 2, is bounded by the $y$-axis, the $x$-axis, the line with equation $x = 4$ and the curve with equation $y = e^x + 2e^{-x}, \, x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2017 - Paper 5

Question icon

Question 6

The-finite-region-$S$,-shown-shaded-in-Figure-2,-is-bounded-by-the-$y$-axis,-the-$x$-axis,-the-line-with-equation-$x-=-4$-and-the-curve-with-equation--$y-=-e^x-+-2e^{-x},-\,-x->-0$-Edexcel-A-Level Maths Pure-Question 6-2017-Paper 5.png

The finite region $S$, shown shaded in Figure 2, is bounded by the $y$-axis, the $x$-axis, the line with equation $x = 4$ and the curve with equation $y = e^x + 2e^... show full transcript

Worked Solution & Example Answer:The finite region $S$, shown shaded in Figure 2, is bounded by the $y$-axis, the $x$-axis, the line with equation $x = 4$ and the curve with equation $y = e^x + 2e^{-x}, \, x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2017 - Paper 5

Step 1

Use integration to find the volume

96%

114 rated

Answer

To find the volume of the solid generated by rotating the region SS around the xx-axis, we can use the formula for volume:

V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2 \, dx

Here, f(x)=ex+2exf(x) = e^x + 2e^{-x}, and the limits of integration are from 00 to 44 (the intersection points along the xx-axis). Thus, the volume VV becomes:

V=π04(ex+2ex)2dxV = \pi \int_0^4 (e^x + 2e^{-x})^2 \, dx.

Step 2

Expand the integrand

99%

104 rated

Answer

First, expand the integrand:

(ex+2ex)2=e2x+4+4ex+4e2x(e^x + 2e^{-x})^2 = e^{2x} + 4 + 4e^{-x} + 4e^{-2x}.

So, the integral to evaluate is:

V=π04(e2x+4+4ex+4e2x)dxV = \pi \int_0^4 (e^{2x} + 4 + 4e^{-x} + 4e^{-2x}) \, dx.

Step 3

Evaluate the integral

96%

101 rated

Answer

Next, evaluate each term in the integral separately:

  1. The integral of e2xe^{2x}: e2xdx=12e2x\int e^{2x} \, dx = \frac{1}{2} e^{2x}.

  2. The integral of 44: 4dx=4x\int 4 \, dx = 4x.

  3. The integral of 4ex4e^{-x}: 4exdx=4ex\int 4e^{-x} \, dx = -4e^{-x}.

  4. The integral of 4e2x4e^{-2x}: 4e2xdx=2e2x\int 4e^{-2x} \, dx = -2e^{-2x}.

Step 4

Combine results and evaluate limits

98%

120 rated

Answer

Now, combining the results, we have:

V=π[12e2x+4x4ex2e2x]04V = \pi \left[ \frac{1}{2} e^{2x} + 4x - 4e^{-x} - 2e^{-2x} \right]_{0}^{4}.

Plugging in the limits:

At x=4x = 4:

  • e2×4=e8e^{2 \times 4} = e^8
  • 4×4=164 \times 4 = 16
  • 4e44 e^{-4}
  • 2e82 e^{-8}

At x=0x = 0:

  • e0=1e^{0} = 1
  • 00
  • 4-4
  • 2-2

So, V=π[(12e8+164e42e8)(12+0+4+2)]. V = \pi \left[ \left( \frac{1}{2} e^8 + 16 - 4e^{-4} - 2e^{-8} \right) - \left( \frac{1}{2} + 0 + 4 + 2 \right) \right].

Step 5

Simplify the final result

97%

117 rated

Answer

After simplifying the expression, the final volume VV becomes:

V=π[12e8+164e42e8126].V = \pi \left[ \frac{1}{2} e^8 + 16 - 4e^{-4} - 2e^{-8} - \frac{1}{2} - 6 \right].

Calculating this gives:

V=π(12e8+104e42e8).V = \pi \left( \frac{1}{2} e^8 + 10 - 4e^{-4} - 2e^{-8} \right).

Thus, the volume of the solid generated is: V=π(12e8+104e42e8) V = \pi \left( \frac{1}{2} e^8 + 10 - 4e^{-4} - 2e^{-8} \right).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;