Photo AI

Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $$f(x) = 4igg(x^2 - 2igg)e^{-2x}$$, $x \in \mathbb{R}$ - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Question icon

Question 9

Figure-2-shows-a-sketch-of-the-curve-C-with-equation-$y-=-f(x)$-where--$$f(x)-=-4igg(x^2---2igg)e^{-2x}$$,--$x-\in-\mathbb{R}$-Edexcel-A-Level Maths Pure-Question 9-2020-Paper 1.png

Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $$f(x) = 4igg(x^2 - 2igg)e^{-2x}$$, $x \in \mathbb{R}$. (a) Show that $f^{\prime}(x) = 8(2... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $$f(x) = 4igg(x^2 - 2igg)e^{-2x}$$, $x \in \mathbb{R}$ - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Step 1

Show that $f^{\prime}(x) = 8(2 + x - x^2)e^{-2x}$

96%

114 rated

Answer

To find the derivative of the function, we apply the product rule. Starting with the function:

f(x)=4(x22)e2xf(x) = 4(x^2 - 2)e^{-2x}

Let:

  • u=4(x22)u = 4(x^2 - 2)
  • v=e2xv = e^{-2x}

Thus,

  • u=8xu' = 8x (derivative of 4(x22)4(x^2 - 2))
  • v=2e2xv' = -2e^{-2x} (derivative of e2xe^{-2x})

By applying the product rule:

f(x)=uv+uvf^{\prime}(x) = u'v + uv'

Substituting:

f(x)=8ximese2x+4(x22)imes(2e2x)f^{\prime}(x) = 8x imes e^{-2x} + 4(x^2 - 2) imes (-2e^{-2x})

This simplifies to:

=8xe2x8(x22)e2x= 8xe^{-2x} - 8(x^2 - 2)e^{-2x}

Combining the terms:

=8(2+xx2)e2x= 8(2 + x - x^2)e^{-2x}

This shows that the derivative is correctly formed.

Step 2

Hence find, in simplest form, the exact coordinates of the stationary points of C.

99%

104 rated

Answer

The stationary points occur where f(x)=0f^{\prime}(x) = 0:

8(2+xx2)e2x=08(2 + x - x^2)e^{-2x} = 0

Since e2x>0e^{-2x} > 0 for all xx, we focus on:

2+xx2=0x2x2=02 + x - x^2 = 0 \\ x^2 - x - 2 = 0

Factoring gives:

(x2)(x+1)=0(x - 2)(x + 1) = 0

Thus, the roots are:

  • x=2x = 2
  • x=1x = -1

Calculating the yy-coordinates:

  • For x=1x = -1: f(1)=4((1)22)e2=4(12)e2=4e2f(-1) = 4((-1)^2 - 2)e^{2} = 4(1 - 2)e^2 = -4e^{2}

  • For x=2x = 2: f(2)=4((2)22)e4=4(42)e4=8e4f(2) = 4((2)^2 - 2)e^{-4} = 4(4 - 2)e^{-4} = 8e^{-4}

Thus, the exact coordinates of the stationary points are:

  • (1,4e2)(-1, -4e^2)
  • (2,8e4)(2, 8e^{-4})

Step 3

Find (i) the range of $g$.

96%

101 rated

Answer

First, we know:

g(x)=2f(x)g(x) = 2f(x)

Substituting f(x)f(x) we have:

g(x)=2imes4(x22)e2x=8(x22)e2xg(x) = 2 imes 4(x^2 - 2)e^{-2x} = 8(x^2 - 2)e^{-2x}

As xx goes to positive or negative infinity, the term e2xe^{-2x} approaches 00 making g(x)g(x) approach 00. Hence, we need to evaluate the minimum and maximum values of g(x)g(x) at stationary points:

At x=1x = -1 and x=2x = 2, we already computed:

  • g(1)=2(4e2)=8e2g(-1) = 2(-4e^2) = -8e^2
  • g(2)=2(8e4)=16e4g(2) = 2(8e^{-4}) = 16e^{-4}

Thus, the range of gg is:

[8e2,16e4][-8e^2, 16e^{-4}]

Step 4

Find (ii) the range of $h$.

98%

120 rated

Answer

Using the definition of hh:

h(x)=2f(x)3h(x) = 2f(x) - 3

Thus:

h(x)=8(x22)e2x3h(x) = 8(x^2 - 2)e^{-2x} - 3

To find the range of h(x)h(x), we look at the minimum and maximum of g(x)g(x) and adjust for the constant:

The minimum of gg is 8e2-8e^2, giving:

h(1)=8e23h(-1) = -8e^2 - 3

The maximum value of gg is 16e416e^{-4}, thus:

h(2)=16e43h(2) = 16e^{-4} - 3

The range of hh then becomes:

[8e23,16e43][-8e^2 - 3, 16e^{-4} - 3]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;