Photo AI

Differentiate with respect to $x$, giving each answer in its simplest form - Edexcel - A-Level Maths Pure - Question 9 - 2014 - Paper 1

Question icon

Question 9

Differentiate-with-respect-to-$x$,-giving-each-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 9-2014-Paper 1.png

Differentiate with respect to $x$, giving each answer in its simplest form. (a) $(1 - 2x)^2$ (b) $\frac{x^3 + 6\sqrt{x}}{2x^2}$

Worked Solution & Example Answer:Differentiate with respect to $x$, giving each answer in its simplest form - Edexcel - A-Level Maths Pure - Question 9 - 2014 - Paper 1

Step 1

(a) Differentiate $(1 - 2x)^2$

96%

114 rated

Answer

To differentiate (12x)2(1 - 2x)^2, we will use the chain rule.

  1. Let u=12xu = 1 - 2x, then (12x)2=u2(1 - 2x)^2 = u^2.

  2. Differentiate using the chain rule:

    ddx(u2)=2ududx\frac{d}{dx}(u^2) = 2u \cdot \frac{du}{dx}

    where dudx=2\frac{du}{dx} = -2.

  3. Therefore,

    ddx((12x)2)=2(12x)(2)=4(12x).\frac{d}{dx}((1 - 2x)^2) = 2(1 - 2x)(-2) = -4(1 - 2x).

  4. Expanding gives:

    4(12x)=4+8x.-4(1 - 2x) = -4 + 8x.

  5. The final answer is:

    4+8x-4 + 8x

Step 2

(b) Differentiate $\frac{x^3 + 6\sqrt{x}}{2x^2}$

99%

104 rated

Answer

For this differentiation, we will use the quotient rule:

If y=f(x)g(x)y = \frac{f(x)}{g(x)}, then dydx=f(x)g(x)f(x)g(x)(g(x))2\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} where:

  • f(x)=x3+6xf(x) = x^3 + 6\sqrt{x}
  • g(x)=2x2g(x) = 2x^2.
  1. Calculate f(x)f'(x):

    • f(x)=3x2+612x1/2=3x2+3x.f'(x) = 3x^2 + 6 \cdot \frac{1}{2} x^{-1/2} = 3x^2 + \frac{3}{\sqrt{x}}.
  2. Calculate g(x)g'(x):

    • g(x)=4x.g'(x) = 4x.
  3. Substitute into the quotient rule:

    dydx=(3x2+3x)(2x2)(x3+6x)(4x)(2x2)2\frac{dy}{dx} = \frac{(3x^2 + \frac{3}{\sqrt{x}})(2x^2) - (x^3 + 6\sqrt{x})(4x)}{(2x^2)^2}

  4. Expanding and simplifying the numerator:

    =6x4+6x4x424x3/24x4= \frac{6x^4 + 6x - 4x^4 - 24x^{3/2}}{4x^4}

    =2x4+6x24x3/24x4= \frac{2x^4 + 6x - 24x^{3/2}}{4x^4}

    =12+32x36x5/2= \frac{1}{2} + \frac{3}{2x^3} - \frac{6}{x^{5/2}}.

  5. The final simplified answer is:

    12+32x36x5/2 \frac{1}{2} + \frac{3}{2x^3} - \frac{6}{x^{5/2}}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;