Photo AI

Without using a calculator, find the exact value of $( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2$ You must show each stage of your working - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Question icon

Question 28

Without-using-a-calculator,-find-the-exact-value-of-$(-ext{sin-}22.5^{-iny-ext{o}}-+--ext{cos-}22.5^{-iny-ext{o}})^2$---You-must-show-each-stage-of-your-working-Edexcel-A-Level Maths Pure-Question 28-2013-Paper 1.png

Without using a calculator, find the exact value of $( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2$ You must show each stage of your working. (a... show full transcript

Worked Solution & Example Answer:Without using a calculator, find the exact value of $( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2$ You must show each stage of your working - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Step 1

Find the exact value of $( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2$

96%

114 rated

Answer

To find the exact value of (extsin22.5inyexto+extcos22.5inyexto)2( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2, we first apply the identity for sine and cosine:

extsin2heta+extcos2heta=1 ext{sin }^2 heta + ext{cos }^2 heta = 1

Thus, we can use:

dim ext{sin }22.5^{ iny ext{o}}= rac{1}{ ext{sqrt} 2} and ext{cos } 22.5^{ iny ext{o}} = rac{1}{ ext{sqrt} 2}. This gives us:

ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}} = rac{1}{ ext{sqrt} 2} + rac{1}{ ext{sqrt} 2} = rac{2}{ ext{sqrt} 2} = ext{sqrt} 2

Now we can square this result:

(extsin22.5inyexto+extcos22.5inyexto)2=(extsqrt2)2=2( ext{sin }22.5^{ iny ext{o}} + ext{cos }22.5^{ iny ext{o}})^2 = ( ext{sqrt} 2)^2 = 2

Step 2

Show that $\text{cos } 2\theta + \text{sin } \theta = 1$ may be written in the form $k \text{sin }^2 \theta - \text{sin } \theta = 0$

99%

104 rated

Answer

Starting with the equation extcos2heta+extsinheta=1 ext{cos } 2 heta + ext{sin } heta = 1, we can rearrange it:

extcos2heta=1extsinheta ext{cos } 2 heta = 1 - ext{sin } heta

Using the double angle formula extcos2heta=2extcos2heta1 ext{cos } 2 heta = 2 ext{cos}^2 heta - 1, we substitute:

2extcos2heta1=1extsinθ2 ext{cos}^2 heta - 1 = 1 - ext{sin } \theta

Rearranging leads to:

2extcos2heta+extsinθ2=02 ext{cos}^2 heta + ext{sin } \theta - 2 = 0

Using the identity extcos2heta=1extsin2heta ext{cos}^2 heta = 1 - ext{sin}^2 heta gives:

2(1extsin2θ)+extsinθ2=02(1 - ext{sin}^2 \theta) + ext{sin } \theta - 2 = 0

This simplifies to the desired form, where we identify k=2k = 2.

Step 3

Hence solve, for $0 < \theta < 360^{\tiny\text{o}}$, the equation $\text{cos } 2\theta + \text{sin } \theta = 1$

96%

101 rated

Answer

From the rearranged equation ksin2θsin θ=0k \text{sin}^2 \theta - \text{sin } \theta = 0 we can factor:

extsinθ(ksin θ1)=0 ext{sin } \theta (k \text{sin } \theta - 1) = 0

Setting each factor to zero gives:

  1. sin θ=0\text{sin } \theta = 0, resulting in:

    • θ=0o,180o\theta = 0^{\tiny\text{o}}, 180^{\tiny\text{o}} (note the restriction 0<θ<360o0 < \theta < 360^{\tiny\text{o}} excludes 0).
  2. ksin θ1=0k \text{sin } \theta - 1 = 0 can be solved to find:

    • sin θ=12\text{sin } \theta = \frac{1}{2}. Thus, for heta heta we have:
    • θ=30o\theta = 30^{\tiny\text{o}} and 150o150^{\tiny\text{o}}.

Summarizing our solutions:

  • θ=30o,150o,180o\theta = 30^{\tiny\text{o}}, 150^{\tiny\text{o}}, 180^{\tiny\text{o}} (all within the required range).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;