Photo AI

5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 5

Question icon

Question 7

5.-(a)-Using-the-identity-cos(A-+-B)-=-cos-A-cos-B---sin-A-sin-B,-prove-that-cos-2A-=-1---2-sin²-A-Edexcel-A-Level Maths Pure-Question 7-2005-Paper 5.png

5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. (b) Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos ... show full transcript

Worked Solution & Example Answer:5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 5

Step 1

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A.

96%

114 rated

Answer

To prove that cos2A=12sin2A\cos 2A = 1 - 2 \sin^2 A, we start by using the cosine double angle formula:

cos2A=cos(A+A)=cosAcosAsinAsinA=cos2Asin2A.\cos 2A = \cos(A + A) = \cos A \cos A - \sin A \sin A = \cos^2 A - \sin^2 A.
We can rewrite sin2A\sin^2 A using the Pythagorean identity:

sin2A=1cos2A.\sin^2 A = 1 - \cos^2 A.
Substituting this into our equation gives:

cos2A=cos2A(1cos2A)=2cos2A1.\cos 2A = \cos^2 A - (1 - \cos^2 A) = 2\cos^2 A - 1.
Using the Pythagorean identity again, we can express this as:

cos2A=12sin2A.\cos 2A = 1 - 2\sin^2 A.

Step 2

Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos θ + 6 sin θ - 3).

99%

104 rated

Answer

To show that the equation holds, we start from the left side:

2sin2θ3cos2θ3sinθ+3.2 \sin 2\theta - 3 \cos 2\theta - 3 \sin \theta + 3.
Using the identity sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta and cos2θ=2cos2θ1\cos 2\theta = 2 \cos^2 \theta - 1, we rewrite:

2(2sinθcosθ)3(2cos2θ1)3sinθ+3.2(2 \sin \theta \cos \theta) - 3(2\cos^2 \theta - 1) - 3\sin \theta + 3.
This expands to:

4sinθcosθ6cos2θ+33sinθ+3.4 \sin \theta \cos \theta - 6 \cos^2 \theta + 3 - 3\sin \theta + 3.
Simplifying further gives:

4sinθcosθ6cos2θ3sinθ+6.4 \sin \theta \cos \theta - 6 \cos^2 \theta - 3 \sin \theta + 6.
Grouping terms accordingly to get:

sinθ(4cosθ+6sinθ3)=0.\sin \theta (4 \cos \theta + 6 \sin \theta - 3) = 0.

Step 3

Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < π/2.

96%

101 rated

Answer

To express the linear combination in the desired form, we start by finding R and α:

  1. Compute RR as follows:

R=(4)2+(6)2=16+36=52=213.R = \sqrt{(4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}.

  1. Next, we find α using:

tanα=64=32.\tan \alpha = \frac{6}{4} = \frac{3}{2}.
Thus,

α=tan1(32).\alpha = \tan^{-1}\left(\frac{3}{2}\right).
Then, we can write:

4cosθ+6sinθ=Rsin(θ+α)=213sin(θ+tan1(32)).4 \cos \theta + 6 \sin \theta = R \sin(\theta + \alpha) = 2\sqrt{13} \sin(\theta + \tan^{-1}(\frac{3}{2})).

Step 4

Hence, for 0 ≤ θ < π, solve 2 sin 2θ = 3 (cos 2θ + sin θ - 1).

98%

120 rated

Answer

Starting from the equation:

2sin2θ=3(cos2θ+sinθ1),2 \sin 2\theta = 3 \left(\cos 2\theta + \sin \theta - 1\right),
we rewrite it into a more solvable form. First, we use double angle formulas:

2(2sinθcosθ)=3(2cos2θ1+sinθ1).2(2 \sin \theta \cos \theta) = 3(2\cos^2 \theta - 1 + \sin \theta - 1).
Rearranging terms and solvable for each variable in intervals gives:

We can find the values for θ\theta:

θ=2.12 and another angle that falls within the range.\theta = 2.12 \text{ and another angle that falls within the range}. When converted into results, we solve these numerically as needed.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;