Using the result from part (a), we need to evaluate the integral:
∫02πθf(θ)dθ=∫02πθ(21+27cos2θ)dθ.
This splits into two separate integrals:
∫02πθ(21)dθ+∫02πθ(27cos2θ)dθ.
The first integral is:
∫02π21θdθ=21⋅[2θ2]02π=21⋅24π2=16π2.
For the second integral, we can use integration by parts:
Let:
- u=θ
- dv=27cos2θdθ
Then:
- du=dθ
- v=47sin2θ
Applying integration by parts:
∫udv=uv−∫vdu
Calculating:
∫02πθ(27cos2θ)dθ=[θ⋅47sin2θ]02π−∫02π47sin2θdθ.
The first term evaluates to zero at both limits:
=0−∫02π47sin2θdθ.
Evaluating the remaining integral:
∫sin2θdθ=−21cos2θ.
Thus:
∫02πsin2θdθ=−21[cos22π−cos0]=−21(0−1)=21.
Putting it all together:
=−47⋅21=−87.
Final value of the integral:
∫02πθf(θ)dθ=16π2−87.
Now converting the integral result:
=16π2−1614=16π2−14.