Photo AI

Given the function: $$f(θ) = 4 \, cos^2 θ - 3 \, sin^2 θ$$ (a) Show that $$f(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ.$$ (b) Hence, using calculus, find the exact value of $$\int_{0}^{\frac{\pi}{2}} θf(θ) \, dθ.$$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6

Question icon

Question 8

Given-the-function:--$$f(θ)-=-4-\,-cos^2-θ---3-\,-sin^2-θ$$--(a)-Show-that-$$f(θ)-=-\frac{1}{2}-+-\frac{7}{2}-\,-cos-2θ.$$----(b)-Hence,-using-calculus,-find-the-exact-value-of-$$\int_{0}^{\frac{\pi}{2}}-θf(θ)-\,-dθ.$$-Edexcel-A-Level Maths Pure-Question 8-2010-Paper 6.png

Given the function: $$f(θ) = 4 \, cos^2 θ - 3 \, sin^2 θ$$ (a) Show that $$f(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ.$$ (b) Hence, using calculus, find the exa... show full transcript

Worked Solution & Example Answer:Given the function: $$f(θ) = 4 \, cos^2 θ - 3 \, sin^2 θ$$ (a) Show that $$f(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ.$$ (b) Hence, using calculus, find the exact value of $$\int_{0}^{\frac{\pi}{2}} θf(θ) \, dθ.$$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6

Step 1

Show that $$f(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ.$$

96%

114 rated

Answer

To show that f(θ)=12+72cos2θf(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ, we start from the original function:

f(θ)=4cos2θ3sin2θf(θ) = 4 \, cos^2 θ - 3 \, sin^2 θ.

Using the identity cos2θ=1+cos2θ2cos^2 θ = \frac{1 + cos 2θ}{2} and sin2θ=1cos2θ2sin^2 θ = \frac{1 - cos 2θ}{2}, we can rewrite the function:

f(θ)=4(1+cos2θ2)3(1cos2θ2)f(θ) = 4\left(\frac{1 + cos 2θ}{2}\right) - 3\left(\frac{1 - cos 2θ}{2}\right)

Expanding this gives:

f(θ)=2(1+cos2θ)32(1cos2θ)f(θ) = 2(1 + cos 2θ) - \frac{3}{2}(1 - cos 2θ)

Combining the terms results in:

f(θ)=2+2cos2θ32+32cos2θf(θ) = 2 + 2 \, cos 2θ - \frac{3}{2} + \frac{3}{2} \, cos 2θ

This simplifies to:

f(θ)=4232+(2+32)cos2θf(θ) = \frac{4}{2} - \frac{3}{2} + (2 + \frac{3}{2}) \, cos 2θ

Thus, we conclude with:

f(θ)=12+72cos2θ.f(θ) = \frac{1}{2} + \frac{7}{2} \, cos 2θ.

Step 2

Hence, using calculus, find the exact value of $$\int_{0}^{\frac{\pi}{2}} θf(θ) \, dθ.$$

99%

104 rated

Answer

Using the result from part (a), we need to evaluate the integral:

0π2θf(θ)dθ=0π2θ(12+72cos2θ)dθ.\int_{0}^{\frac{\pi}{2}} θf(θ) \, dθ = \int_{0}^{\frac{\pi}{2}} θ \left( \frac{1}{2} + \frac{7}{2} \, cos 2θ \right) \, dθ.

This splits into two separate integrals:

0π2θ(12)dθ+0π2θ(72cos2θ)dθ.\int_{0}^{\frac{\pi}{2}} θ \left( \frac{1}{2} \right) \, dθ + \int_{0}^{\frac{\pi}{2}} θ \left( \frac{7}{2} \, cos 2θ \right) \, dθ.

The first integral is:

0π212θdθ=12[θ22]0π2=12π242=π216.\int_{0}^{\frac{\pi}{2}} \frac{1}{2}θ \, dθ = \frac{1}{2} \cdot \left[ \frac{θ^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \cdot \frac{\frac{\pi^2}{4}}{2} = \frac{\pi^2}{16}.

For the second integral, we can use integration by parts:

Let:

  • u=θu = θ
  • dv=72cos2θdθdv = \frac{7}{2}cos 2θ \, dθ

Then:

  • du=dθdu = dθ
  • v=74sin2θv = \frac{7}{4}sin 2θ

Applying integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

Calculating: 0π2θ(72cos2θ)dθ=[θ74sin2θ]0π20π274sin2θdθ.\int_{0}^{\frac{\pi}{2}} θ \left( \frac{7}{2} cos 2θ \right) \, dθ = \left[ θ \cdot \frac{7}{4} sin 2θ \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{7}{4} sin 2θ \, dθ.

The first term evaluates to zero at both limits: =00π274sin2θdθ.= 0 - \int_{0}^{\frac{\pi}{2}} \frac{7}{4} sin 2θ \, dθ.

Evaluating the remaining integral: sin2θdθ=12cos2θ.\int sin 2θ \, dθ = -\frac{1}{2} cos 2θ.

Thus: 0π2sin2θdθ=12[cos2π2cos0]=12(01)=12.\int_{0}^{\frac{\pi}{2}} sin 2θ \, dθ = -\frac{1}{2} \left[ cos 2\frac{\pi}{2} - cos 0 \right] = -\frac{1}{2}(0 - 1) = \frac{1}{2}.

Putting it all together: =7412=78.= -\frac{7}{4} \cdot \frac{1}{2} = -\frac{7}{8}.

Final value of the integral: 0π2θf(θ)dθ=π21678.\int_{0}^{\frac{\pi}{2}} θf(θ) \, dθ = \frac{\pi^2}{16} - \frac{7}{8}.

Now converting the integral result: =π2161416=π21416.= \frac{\pi^2}{16} - \frac{14}{16} = \frac{\pi^2 - 14}{16}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;