Photo AI

9. (i) Solve, for $0 \leq \theta < 180^{\circ}$, \[ \sin(2\theta - 30^{\circ}) + 1 = 0.4 \] giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 5

Question icon

Question 2

9.-(i)-Solve,-for-$0-\leq-\theta-<-180^{\circ}$,----\[-\sin(2\theta---30^{\circ})-+-1-=-0.4-\]----giving-your-answers-to-1-decimal-place-Edexcel-A-Level Maths Pure-Question 2-2013-Paper 5.png

9. (i) Solve, for $0 \leq \theta < 180^{\circ}$, \[ \sin(2\theta - 30^{\circ}) + 1 = 0.4 \] giving your answers to 1 decimal place. (ii) Find all the values o... show full transcript

Worked Solution & Example Answer:9. (i) Solve, for $0 \leq \theta < 180^{\circ}$, \[ \sin(2\theta - 30^{\circ}) + 1 = 0.4 \] giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 5

Step 1

Solve, for $0 \leq \theta < 180^{\circ}$, \[ \sin(2\theta - 30^{\circ}) + 1 = 0.4 \]

96%

114 rated

Answer

To solve the equation, begin by isolating the sine function:

[ \sin(2\theta - 30^{\circ}) = 0.4 - 1 = -0.6 ]

Next, we need to find the angle for which the sine value is -0.6. The reference angle is:

[ 2\theta - 30^{\circ} = \arcsin(-0.6) ] This gives us:

  • Firstly, determine the value using a calculator: [ 2\theta - 30^{\circ} \approx -36.9^{\circ} ] (in the fourth quadrant)
  • The second solution using the sine function in the second quadrant is: [ 2\theta - 30^{\circ} = 180^{\circ} + 36.9^{\circ} = 216.87^{\circ} ]

From here, we can solve for ( \theta ):

For the first solution: [ 2\theta = -36.9^{\circ} + 30^{\circ} = -6.9^{\circ} ] [ \theta = -3.45^{\circ} ] (not valid) [ 2\theta \approx 216.87^{\circ} + 30^{\circ} \approx 246.87^{\circ} ] Thus, [ \theta = \frac{246.87}{2} \approx 123.4^{\circ} ]

The valid solution in the range 0θ<1800 \leq \theta < 180^{\circ} is: [ \theta \approx 123.4^{\circ} ]

Step 2

Find all the values of $x$, in the interval $0 \leq x < 360^{\circ}$, for which \[ 9\cos^2{x} - 11\cos{x} + 3\sin^2{x} = 0 \]

99%

104 rated

Answer

First, convert sin2x\sin^2{x} using the identity sin2x=1cos2x\sin^2{x} = 1 - \cos^2{x}:

[ 9\cos^2{x} - 11\cos{x} + 3(1 - \cos^2{x}) = 0 ]

Simplifying this gives: [ (9 - 3)\cos^2{x} - 11\cos{x} + 3 = 0 ] [ 6\cos^2{x} - 11\cos{x} + 3 = 0 ]

Now, let y=cosxy = \cos{x}, the equation becomes a quadratic: [ 6y^2 - 11y + 3 = 0 ]

Using the quadratic formula: [ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ] Where a=6a = 6, b=11b = -11, and c=3c = 3: [ y = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 6 \cdot 3}}{2 \cdot 6} ] [ = \frac{11 \pm \sqrt{121 - 72}}{12} ] [ = \frac{11 \pm \sqrt{49}}{12} ] [ = \frac{11 \pm 7}{12} ]

This gives us two solutions:

  1. [ y = \frac{18}{12} = 1.5 ] (not valid since y1|y| \leq 1)
  2. [ y = \frac{4}{12} = \frac{1}{3} ]

So we need to solve ( \cos{x} = \frac{1}{3} ):

The possible angles are:

  1. [ x = \arccos\left(\frac{1}{3}\right) \approx 70.5^{\circ} ]
  2. Second quadrant solution: [ x = 360^{\circ} - 70.5^{\circ} \approx 289.5^{\circ} ]

Therefore, the solutions for ( x ) are: [ x \approx 70.5^{\circ} ] and [ x \approx 289.5^{\circ} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;