Photo AI

Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Question icon

Question 5

Given-that-$y-=-\frac{\ln(x^2-+-1)}{x}$,-find-$\frac{dy}{dx}$-Edexcel-A-Level Maths Pure-Question 5-2010-Paper 2.png

Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$. Given that $x = \tan(y)$, show that $\frac{dy}{dx} = \frac{1}{1 + x^2}$.

Worked Solution & Example Answer:Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Step 1

Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we will use the quotient rule.

  1. Let ( u = \ln(x^2 + 1) ), then using the product rule, we find:

    dudx=2xx2+1\frac{du}{dx} = \frac{2x}{x^2 + 1}

  2. Applying the quotient rule:

    dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{ v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}
    where ( v = x ) and ( \frac{dv}{dx} = 1 ):

    dydx=x2xx2+1ln(x2+1)1x2.\frac{dy}{dx} = \frac{x \cdot \frac{2x}{x^2 + 1} - \ln(x^2 + 1) \cdot 1}{x^2}.

    Thus,

    dydx=2x2x2+1ln(x2+1)x2.\frac{dy}{dx} = \frac{\frac{2x^2}{x^2 + 1} - \ln(x^2 + 1)}{x^2}.

    This gives us the required derivative.

Step 2

Given that $x = \tan(y)$, show that $\frac{dy}{dx} = \frac{1}{1 + x^2}$

99%

104 rated

Answer

Given that ( x = \tan(y) ), we differentiate both sides with respect to xx:

  1. Using implicit differentiation, we have:

    dxdy=sec2(y)\frac{dx}{dy} = \sec^2(y)

    So,

    dydx=1sec2(y).\frac{dy}{dx} = \frac{1}{\sec^2(y)}.

  2. Employing the identity ( \sec^2(y) = 1 + \tan^2(y) ):

    dydx=11+tan2(y).\frac{dy}{dx} = \frac{1}{1 + \tan^2(y)}.

  3. Since ( x = \tan(y) ), we substitute:

    dydx=11+x2,\frac{dy}{dx} = \frac{1}{1 + x^2}, as required.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;