Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin} \left( t + \frac{\pi}{6} \right)$, $y = 3\text{cos} 2t$, $0 \leq t < 2\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 8

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations-$x-=-4-ext{sin}-\left(-t-+-\frac{\pi}{6}-\right)$,-$y-=-3\text{cos}-2t$,-$0-\leq-t-<-2\pi$-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 8.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin} \left( t + \frac{\pi}{6} \right)$, $y = 3\text{cos} 2t$, $0 \leq t < 2\pi$. (a) Fin... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin} \left( t + \frac{\pi}{6} \right)$, $y = 3\text{cos} 2t$, $0 \leq t < 2\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 8

Step 1

Find an expression for $\frac{dy}{dx}$ in terms of $t$

96%

114 rated

Answer

To find dydx\frac{dy}{dx} in terms of tt, we need to compute dydt\frac{dy}{dt} and dxdt\frac{dx}{dt}.

  1. First, let's differentiate y=3cos2ty = 3\text{cos} 2t: dydt=6sin2t\frac{dy}{dt} = -6\text{sin} 2t

  2. Next, we differentiate x=4sin(t+π6)x = 4\text{sin} \left( t + \frac{\pi}{6} \right): dxdt=4cos(t+π6)\frac{dx}{dt} = 4\text{cos} \left( t + \frac{\pi}{6} \right)

  3. Now we apply the chain rule to find dydx\frac{dy}{dx}: dydx=dydtdxdt=6sin2t4cos(t+π6)\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6\text{sin} 2t}{4\text{cos} \left( t + \frac{\pi}{6} \right)}

  4. Therefore, the expression for dydx\frac{dy}{dx} is: dydx=3sin2t2cos(t+π6)\frac{dy}{dx} = \frac{-3\text{sin} 2t}{2\text{cos} \left( t + \frac{\pi}{6} \right)}

Step 2

Find the coordinates of all the points on C where $\frac{dy}{dx} = 0$

99%

104 rated

Answer

To find where dydx=0\frac{dy}{dx} = 0, we need to set the numerator of the previous expression to zero, since for a fraction to be zero, only the numerator must equal zero.

  1. Set the numerator equal to zero: 3sin2t=0-3\text{sin} 2t = 0 This implies that: sin2t=0\text{sin} 2t = 0

  2. Solve for 2t2t: 2t=nπ,nZ2t = n\pi, \quad n \in \mathbb{Z} Thus, we have: t=nπ2t = \frac{n\pi}{2}

  3. Since 0t<2π0 \leq t < 2\pi, valid integer values for nn are 0, 1, 2, 3, and 4:

    • For n=0n=0: t=0t = 0
    • For n=1n=1: t=π2t = \frac{\pi}{2}
    • For n=2n=2: t=πt = \pi
    • For n=3n=3: t=3π2t = \frac{3\pi}{2}
    • For n=4n=4: t=2πt = 2\pi
  4. Now we find the corresponding coordinates:

    • For t=0t=0: x=4sin(0+π6)=412=2x = 4\text{sin} \left( 0 + \frac{\pi}{6} \right) = 4\cdot\frac{1}{2} = 2 y=3cos0=3y = 3\text{cos} 0 = 3 Coordinate: (2,3)(2, 3)
    • For t=π2t=\frac{\pi}{2}: x=4sin(π2+π6)=432=23x = 4\text{sin} \left( \frac{\pi}{2} + \frac{\pi}{6} \right) = 4\cdot\frac{\sqrt{3}}{2} = 2\sqrt{3} y=3cosπ=3y = 3\text{cos} \pi = -3 Coordinate: (23,3)(2\sqrt{3}, -3)
    • For t=πt=\pi: x=4sin(π+π6)=4(12)=2x = 4\text{sin} \left( \pi + \frac{\pi}{6} \right) = 4\cdot\left(-\frac{1}{2}\right) = -2 y=3cos2π=3y = 3\text{cos} 2\pi = 3 Coordinate: (2,3)(-2, 3)
    • For t=3π2t=\frac{3\pi}{2}: x=4sin(3π2+π6)=4(32)=23x = 4\text{sin} \left( \frac{3\pi}{2} + \frac{\pi}{6} \right) = 4\cdot\left(-\frac{\sqrt{3}}{2}\right) = -2\sqrt{3} y=3cos3π=3y = 3\text{cos} 3\pi = -3 Coordinate: (23,3)(-2\sqrt{3}, -3)
    • For t=2πt=2\pi: x=4sin(2π+π6)=412=2x = 4\text{sin} \left( 2\pi + \frac{\pi}{6} \right) = 4\cdot\frac{1}{2} = 2 y=3cos4π=3y = 3\text{cos} 4\pi = 3 Coordinate: (2,3)(2, 3)
  5. Summary of coordinates where dydx=0\frac{dy}{dx} = 0:

    • (2,3)(2, 3)
    • (23,3)(2\sqrt{3}, -3)
    • (2,3)(-2, 3)
    • (23,3)(-2\sqrt{3}, -3)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;