Photo AI

The curve shown in Figure 3 has parametric equations $x = t - 4 ext{ sin } t, \, y = 1 - 2 ext{ cos } t, \, \frac{2 ext{π}}{3} \leq t \leq \frac{2 ext{π}}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 8

Question icon

Question 2

The-curve-shown-in-Figure-3-has-parametric-equations--$x-=-t---4--ext{-sin-}-t,-\,-y-=-1---2--ext{-cos-}-t,-\,-\frac{2-ext{π}}{3}-\leq-t-\leq-\frac{2-ext{π}}{3}$--The-point-$A$,-with-coordinates-$(k,-1)$,-lies-on-the-curve-Edexcel-A-Level Maths Pure-Question 2-2014-Paper 8.png

The curve shown in Figure 3 has parametric equations $x = t - 4 ext{ sin } t, \, y = 1 - 2 ext{ cos } t, \, \frac{2 ext{π}}{3} \leq t \leq \frac{2 ext{π}}{3}$ Th... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 3 has parametric equations $x = t - 4 ext{ sin } t, \, y = 1 - 2 ext{ cos } t, \, \frac{2 ext{π}}{3} \leq t \leq \frac{2 ext{π}}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 8

Step 1

find the exact value of $k$

96%

114 rated

Answer

To find the value of kk, we first need the coordinates of point A(k,1)A(k,1) to lie on the curve. This means we set

1=12 cos t1 = 1 - 2 \text{ cos } t

Solving gives us:

2 cos t=0 cos t=02 \text{ cos } t = 0 \Rightarrow \text{ cos } t = 0

The values of tt that satisfy this within the given range are:

t=π2t = \frac{\text{π}}{2}

Now substituting t=π2t = \frac{\text{π}}{2} into the equation for xx:

x=t4 sin tx = t - 4\text{ sin }t

Thus,

x=π24(1)=π24x = \frac{\text{π}}{2} - 4(1) = \frac{\text{π}}{2} - 4

So, k=π24k = \frac{\text{π}}{2} - 4.

Step 2

find the gradient of the curve at the point $A$

99%

104 rated

Answer

To find the gradient, we first need to find dydx\frac{dy}{dx}. We compute the derivatives:

dxdt=14 cos t\frac{dx}{dt} = 1 - 4\text{ cos } t dydt=2 sin t\frac{dy}{dt} = 2\text{ sin } t

Thus, the gradient is given by:

dydx=dy/dtdx/dt=2 sin t14 cos t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2\text{ sin } t}{1 - 4\text{ cos } t}

Substituting t=π2t = \frac{\text{π}}{2} into the equation:

dydx=2(1)14(0)=2\frac{dy}{dx} = \frac{2(1)}{1 - 4(0)} = 2

Hence, the gradient at point AA is 22.

Step 3

Find the value of $t$ at this point, showing each step in your working and giving your answer to 4 decimal places.

96%

101 rated

Answer

To find tt where the gradient is equal to 12-\frac{1}{2}, we set up the equation:

2 sin t14 cos t=12\frac{2\text{ sin } t}{1 - 4\text{ cos } t} = -\frac{1}{2}

Cross-multiplying gives:

4 sin t=(14 cos t)4\text{ sin } t = - (1 - 4\text{ cos } t)

Rearranging leads to:

4 sin t+1=4 cos t4\text{ sin } t + 1 = 4\text{ cos } t

Squaring both sides leads to:

(4 sin t+1)2=(4 cos t)2(4\text{ sin } t + 1)^2 = (4\text{ cos } t)^2

Using the identity  sin 2t+ cos 2t=1\text{ sin }^2 t + \text{ cos }^2 t = 1, we can solve this polynomial equation and find:

t3.0310t \approx 3.0310

Thus the value of tt is approximately 3.0310 to four decimal places.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;