Photo AI

The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{6}.$ (a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}.$ (b) Show that a cartesian equation of the curve is $y = \frac{\sqrt{3}}{2} + \frac{1}{2}(1 - x^{2}), \, -1 < x < 1.$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 6

Question icon

Question 6

The-curve-shown-in-Figure-2-has-parametric-equations--$x-=--ext{sin}(t),-\,-y-=--ext{sin}\left(t-+-\frac{\pi}{6}\right),-\quad-\frac{\pi}{2}-<-t-<-\frac{\pi}{6}.$--(a)-Find-an-equation-of-the-tangent-to-the-curve-at-the-point-where-$t-=-\frac{\pi}{6}.$--(b)-Show-that-a-cartesian-equation-of-the-curve-is--$y-=-\frac{\sqrt{3}}{2}-+-\frac{1}{2}(1---x^{2}),--\,--1-<-x-<-1.$-Edexcel-A-Level Maths Pure-Question 6-2006-Paper 6.png

The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{6}.$ (... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{6}.$ (a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}.$ (b) Show that a cartesian equation of the curve is $y = \frac{\sqrt{3}}{2} + \frac{1}{2}(1 - x^{2}), \, -1 < x < 1.$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 6

Step 1

Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$

96%

114 rated

Answer

To find the equation of the tangent, we first need to differentiate the parametric equations.

  1. Differentiate:

    dxdt=cos(t)\frac{dx}{dt} = \cos(t)

    dydt=cos(t+π6)\frac{dy}{dt} = \cos\left(t + \frac{\pi}{6}\right)

    Using the compound angle formula:

    cos(t+π6)=cos(t)cos(π6)sin(t)sin(π6)=cos(t)32sin(t)12\cos\left(t + \frac{\pi}{6}\right) = \cos(t)\cos\left(\frac{\pi}{6}\right) - \sin(t)\sin\left(\frac{\pi}{6}\right) = \cos(t)\frac{\sqrt{3}}{2} - \sin(t)\frac{1}{2}

  2. Find the derivatives at t=π6t = \frac{\pi}{6}:

    At t=π6t = \frac{\pi}{6},

    x=sin(π6)=12x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}

    y=sin(π6+π6)=sin(π3)=32y = \sin\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}

    So, the point is (12,32)\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right).

  3. Calculate the slope of the tangent:

  4. Now, using point-slope form, the equation of the tangent line is:

    y32=13(x12)y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}\left(x - \frac{1}{2}\right)

    Rearranging gives:

    y=13x+32123y = \frac{1}{\sqrt{3}} x + \frac{\sqrt{3}}{2} - \frac{1}{2\sqrt{3}}.

Step 2

Show that a cartesian equation of the curve is $y = \frac{\sqrt{3}}{2} + \frac{1}{2}(1 - x^{2}), -1 < x < 1$

99%

104 rated

Answer

To show that y=32+12(1x2)y = \frac{\sqrt{3}}{2} + \frac{1}{2}(1 - x^{2}), we start with our parametric equations:

x=sin(t),y=sin(t+π6).x = \sin(t), \, y = \sin\left(t + \frac{\pi}{6}\right).

  1. Express yy in terms of xx:

    From the first equation, we know:

    y=sin(t+π6)=sin(t)cos(π6)+cos(t)sin(π6)=sin(t)32+cos(t)12.y = \sin\left(t + \frac{\pi}{6}\right) = \sin(t)\cos\left(\frac{\pi}{6}\right) + \cos(t)\sin\left(\frac{\pi}{6}\right) = \sin(t)\frac{\sqrt{3}}{2} + \cos(t)\frac{1}{2}.

    Substitute the value of $

    sin(t)=x\sin(t) = x

    and thus:

ightarrow \cos(t) = \sqrt{1 - x^{2}}.$$

  1. Substitute it back into the equation for yy:

    y=32x+121x2.y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{1 - x^{2}}.

  2. Simplifying yields:

    y=32+12(1x2).y = \frac{\sqrt{3}}{2} + \frac{1}{2}(1 - x^{2}).

    This shows that the cartesian equation of the curve is verified.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;