Photo AI

3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 6

Question icon

Question 7

3.-(a)-Express-\(-\frac{5}{(x-1)(3x+2)}-\)-in-partial-fractions-Edexcel-A-Level Maths Pure-Question 7-2011-Paper 6.png

3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions. (b) Hence find \( \int \frac{5}{(x-1)(3x+2)} \, dx \), where \( x > 1 \). (c) Find the particu... show full transcript

Worked Solution & Example Answer:3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 6

Step 1

Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions.

96%

114 rated

Answer

To express ( \frac{5}{(x-1)(3x+2)} ) in partial fractions, we set up the equation:

[ \frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2} ]

Multiplying through by ( (x-1)(3x+2) ) gives:

[ 5 = A(3x+2) + B(x-1) ]

Substituting convenient values of ( x ):

  1. Let ( x = 1 ): [ 5 = A(3(1)+2) \Rightarrow 5 = 5A \Rightarrow A = 1 ]
  2. Let ( x = -\frac{2}{3} ): [ 5 = B(-\frac{2}{3}-1) \Rightarrow 5 = B(-\frac{5}{3}) \Rightarrow B = -3 ]

Thus, the partial fraction decomposition is:

[ \frac{5}{(x-1)(3x+2)} = \frac{1}{x-1} - \frac{3}{3x+2} ]

Step 2

Hence find \( \int \frac{5}{(x-1)(3x+2)} \, dx \), where \( x > 1 \).

99%

104 rated

Answer

Using the partial fraction result, we can integrate:

[ \int \frac{5}{(x-1)(3x+2)} , dx = \int \left( \frac{1}{x-1} - \frac{3}{3x+2} \right) , dx ]

This results in:

[ = \ln |x-1| - \ln |3x+2| + C = \ln \left( \frac{x-1}{3x+2} \right) + C ]

Step 3

Find the particular solution of the differential equation \( (x-1)(3x+2) \frac{dy}{dx} = 5y \), \( x > 1 \), for which \( y=8 \) at \( x=2 \).

96%

101 rated

Answer

We first rewrite the equation:

[ \frac{dy}{y} = \frac{5}{(x-1)(3x+2)} , dx ]

Integrating both sides:

[ \ln |y| = \int \frac{5}{(x-1)(3x+2)} , dx ]

Substituting our previous solution:

[ = \ln \left( \frac{x-1}{3x+2} \right) + C ]

Exponentiating both sides gives:

[ y = K \cdot \frac{x-1}{3x+2} ]

Using the condition ( y = 8 ) at ( x = 2 ):

[ 8 = K \cdot \frac{2-1}{3(2)+2} \Rightarrow 8 = K \cdot \frac{1}{8} \Rightarrow K = 64 ]

Thus, the particular solution is:

[ y = \frac{64(x-1)}{3x+2} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;