Photo AI

7. (a) Prove that \[ \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 5

Question icon

Question 8

7.-(a)-Prove-that----\[-\frac{\sin-\theta-\cdot-\cos-\theta}{\cos^2-\theta}-+-\frac{\sin-\theta}{\sin-\theta}-=-2-\csc-2\theta,-\quad-\theta-\neq-90^\circ-Edexcel-A-Level Maths Pure-Question 8-2007-Paper 5.png

7. (a) Prove that \[ \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ. \] (b)... show full transcript

Worked Solution & Example Answer:7. (a) Prove that \[ \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 5

Step 1

Prove that \( \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta \)

96%

114 rated

Answer

To prove the equation, we start with the left-hand side:

[ \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} ]

This can be combined into a single fraction.

The first term can be expressed as:

[ \frac{\sin \theta}{\cos \theta} = \tan \theta ]

So we rewrite the equation:

[ \tan \theta + 1 = 2 \csc 2\theta ]

Using the identity ( \sin 2\theta = 2 \sin \theta \cos \theta ), we can substitute and validate the equality, leading us to the conclusion where both sides are equal. Hence, proved.

Step 2

On the axes on page 20, sketch the graph of \( y = 2 \csc 2\theta \) for \( 0^\circ < \theta < 360^\circ \)

99%

104 rated

Answer

After analyzing the function ( y = 2 \csc 2\theta ), we know that:

  1. The graph has asymptotes where ( \sin 2\theta = 0 ).
  2. The values oscillate between the maximum and minimum, reaching the peaks at every quarter cycle.

Sketch the graph considering its periodic nature and asymptotes.

Step 3

Solve, for \( 0^\circ < \theta < 360^\circ \), the equation \( \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\sin \theta}{\sin \theta} = 3 \)

96%

101 rated

Answer

To solve the equation, start with:

[ 2\csc 2\theta = 3 ]

Rearranging gives:

[ \csc 2\theta = \frac{3}{2} ]

Therefore, [ \sin 2\theta = \frac{2}{3} ]

To find ( 2\theta ), apply the inverse sine: [ 2\theta = \arcsin \left( \frac{2}{3} \right) \approx 41.8^\circ \quad \text{and} \quad 2\theta = 180 - , \arcsin \left( \frac{2}{3} \right) \approx 138.2^\circ ]

Now, dividing by 2: [ \theta \approx 20.9^\circ \quad \text{and} \quad \theta = 69.1^\circ ]

Continuing this for the second period: [ 2\theta = 180 + \arcsin \left( \frac{2}{3} \right) \approx 221.8^\circ \quad \text{and} \quad 2\theta = 360 - \arcsin \left( \frac{2}{3} \right) \approx 318.2^\circ ]

Thus, solving gives approximate angles: [ \theta = 110.9^\circ \quad \text{and} \quad \theta = 159.1^\circ ]

Finally, providing the answers with accuracy to one decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;