Photo AI

In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 12 - 2021 - Paper 1

Question icon

Question 12

In-this-question-you-should-show-all-stages-of-your-working-Edexcel-A-Level Maths Pure-Question 12-2021-Paper 1.png

In this question you should show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. (a) Given that $1 + ext{cos} 2... show full transcript

Worked Solution & Example Answer:In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 12 - 2021 - Paper 1

Step 1

Given that $1 + ext{cos} 2 heta + ext{sin} 2 heta eq 0$ prove that $\frac{1 - \text{cos} 2\theta + \text{sin} 2\theta}{1 + \text{cos} 2\theta + \text{sin} 2\theta} = \tan \theta$

96%

114 rated

Answer

To prove this identity, start by using double angle formulas:

  1. Recall the double angle formulas:

    • cos2θ=2cos2θ1\text{cos} 2\theta = 2 \text{cos}^2 \theta - 1
    • sin2θ=2sinθcosθ\text{sin} 2\theta = 2 \text{sin} \theta \text{cos} \theta
  2. Substitute these into the left-hand side:

    1(2cos2θ1)+2sinθcosθ1+(2cos2θ1)+2sinθcosθ\frac{1 - (2 \text{cos}^2 \theta - 1) + 2 \text{sin} \theta \text{cos} \theta}{1 + (2 \text{cos}^2 \theta - 1) + 2 \text{sin} \theta \text{cos} \theta}

    Simplifying gives:

    22cos2θ+2sinθcosθ2cos2θ+2sinθcosθ\frac{2 - 2 \text{cos}^2 \theta + 2 \text{sin} \theta \text{cos} \theta}{2 \text{cos}^2 \theta + 2 \text{sin} \theta \text{cos} \theta}

    which can be factored:

    2(1cos2θ+sinθcosθ)2(cos2θ+sinθcosθ)=1cos2θ+sinθcosθcos2θ+sinθcosθ\frac{2(1 - \text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta)}{2(\text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta)} = \frac{1 - \text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta}{\text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta}

  3. Recognize 1cos2θ=sin2θ1 - \text{cos}^2 \theta = \text{sin}^2 \theta, thus:

    sin2θ+sinθcosθcos2θ+sinθcosθ\frac{\text{sin}^2 \theta + \text{sin} \theta \text{cos} \theta}{\text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta}

  4. Factor out sinθ\text{sin} \theta in the numerator and denominator:

    sinθ(sinθ+cosθ)cosθ(cosθ+sinθ)\frac{\text{sin} \theta(\text{sin} \theta + \text{cos} \theta)}{\text{cos} \theta(\text{cos} \theta + \text{sin} \theta)}

  5. This reduces to:

    tanθ\tan \theta

  6. Hence, the identity is proven.

Step 2

Hence solve, for $0 < x < 180^ ext{o}$, $\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = 3 \sin 2x$

99%

104 rated

Answer

Using the result from part (a), we can rewrite:

1cos4x+sin4x1+cos4x+sin4x=tan2x\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = \tan 2x

Now, we equate:

tan2x=3sin2x\tan 2x = 3 \sin 2x

This can be solved by rewriting:

tan2x=sin2xcos2x\tan 2x = \frac{\sin 2x}{\cos 2x}

Thus:

sin2xcos2x=3sin2x\frac{\sin 2x}{\cos 2x} = 3 \sin 2x

Rearranging gives:

sin2x=3sin2xcos2x\sin 2x = 3 \sin 2x \cos 2x

Now, simplifying:

sin2x(13cos2x)=0\sin 2x(1 - 3 \cos 2x) = 0

This gives two cases to consider:

  1. Case 1: sin2x=0\sin 2x = 0.

    • For 0<2x<360exto0 < 2x < 360^ ext{o},
      • Thus, 2x=0exto,180exto2x = 0^ ext{o}, 180^ ext{o},
      • Which gives x=0exto,90extox = 0^ ext{o}, 90^ ext{o}. (only 90exto90^ ext{o} is valid)
  2. Case 2: 13cos2x=01 - 3 \cos 2x = 0.

    • Thus, cos2x=13\cos 2x = \frac{1}{3}.

Using: cos1(13)\cos^{-1}(\frac{1}{3}), we find:

  • 2x70.53exto2x \approx 70.53^ ext{o} (in the first quadrant) and 2x289.47exto2x \approx 289.47^ ext{o} (which gives a corresponding xx of 144.735exto144.735^ ext{o}). Thus, valid solutions for xx are
  • x35.27exto,72.36extox \approx 35.27^ ext{o}, 72.36^ ext{o}.

Thus combining all valid values gives:

  • x=90exto,35.3exto,144.7extox = 90^ ext{o}, 35.3^ ext{o}, 144.7^ ext{o}.

Final solutions rounded to one decimal place: x90.0exto,35.3exto,144.7extox \approx 90.0^ ext{o}, 35.3^ ext{o}, 144.7^ ext{o}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;