Photo AI

Figure 2 shows the design for a triangular garden ABC where AB = 7 m, AC = 13 m and BC = 10 m - Edexcel - A-Level Maths Pure - Question 8 - 2013 - Paper 5

Question icon

Question 8

Figure-2-shows-the-design-for-a-triangular-garden-ABC-where-AB-=-7-m,-AC-=-13-m-and-BC-=-10-m-Edexcel-A-Level Maths Pure-Question 8-2013-Paper 5.png

Figure 2 shows the design for a triangular garden ABC where AB = 7 m, AC = 13 m and BC = 10 m. Given that angle BAC = \( \theta \) radians, (a) show that, to 3 dec... show full transcript

Worked Solution & Example Answer:Figure 2 shows the design for a triangular garden ABC where AB = 7 m, AC = 13 m and BC = 10 m - Edexcel - A-Level Maths Pure - Question 8 - 2013 - Paper 5

Step 1

Given that angle BAC = \( \theta \) radians, show that, to 3 decimal places, \( \theta = 0.865 \)

96%

114 rated

Answer

To find ( \theta ), we can use the cosine rule in triangle ABC:

cosθ=AB2+AC2BC22×AB×AC\cos \theta = \frac{AB^2 + AC^2 - BC^2}{2 \times AB \times AC}

Substituting the values,

cosθ=72+1321022×7×13=49+169100182=118182=5991\cos \theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13} = \frac{49 + 169 - 100}{182} = \frac{118}{182} = \frac{59}{91}

Now, to find ( \theta ), we take the inverse cosine:

θ=cos1(5991)0.865 (to 3 decimal places)\theta = \cos^{-1}\left(\frac{59}{91}\right) \approx 0.865 \text{ (to 3 decimal places)}

Step 2

find the amount of grass seed needed, giving your answer to the nearest 10 g.

99%

104 rated

Answer

First, we find the area of the shaded region S.

  1. Calculate the area of triangle ABC:

    Area=12×AB×AC×sin(θ)\text{Area} = \frac{1}{2} \times AB \times AC \times \sin(\theta)

    Substituting the values:

    Area=12×7×13×sin(0.865)12×7×13×0.75634.6m2\text{Area} = \frac{1}{2} \times 7 \times 13 \times \sin(0.865) \approx \frac{1}{2} \times 7 \times 13 \times 0.756 \approx 34.6 \, m^2
  2. Determine the area of sector ADB:

    Area of Sector=12×r2×θ=12×72×0.86521.2m2\text{Area of Sector} = \frac{1}{2} \times r^2 \times \theta = \frac{1}{2} \times 7^2 \times 0.865 \approx 21.2 \, m^2
  3. Calculate the area of region S:

    Area of shaded region S=Area of triangle ABCArea of sector ADB\text{Area of shaded region S} = \text{Area of triangle ABC} - \text{Area of sector ADB} Area of shaded region S34.621.2=13.4m2\text{Area of shaded region S} \approx 34.6 - 21.2 = 13.4 \, m^2
  4. Finally, calculate the amount of grass seed needed:

    Since 50 g of seed is needed for each square metre:

    Total Seed=13.4×50=670g\text{Total Seed} = 13.4 \times 50 = 670 g

    Rounding to the nearest 10 g, the answer is 670 g.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;