Photo AI

3. (a) Express $2 \, ext{cos} \, heta - ext{sin} \, heta$ in the form $R \, ext{cos} ( heta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 3

Question icon

Question 4

3.-(a)-Express-$2-\,--ext{cos}-\,--heta----ext{sin}-\,--heta$-in-the-form-$R-\,--ext{cos}-(-heta-+-\alpha)$,-where-$R$-and-$\alpha$-are-constants,-$R->-0$-and-$0-<-\alpha-<-90^\circ$-Edexcel-A-Level Maths Pure-Question 4-2016-Paper 3.png

3. (a) Express $2 \, ext{cos} \, heta - ext{sin} \, heta$ in the form $R \, ext{cos} ( heta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \... show full transcript

Worked Solution & Example Answer:3. (a) Express $2 \, ext{cos} \, heta - ext{sin} \, heta$ in the form $R \, ext{cos} ( heta + \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 3

Step 1

Express $2 \cos \theta - \sin \theta$ in the form $R \cos (\theta + \alpha)$

96%

114 rated

Answer

To express 2cosθsinθ2 \cos \theta - \sin \theta in the form Rcos(θ+α)R \cos (\theta + \alpha), we match it to the standard form. Looking for constants, we need:

  1. Find RR: R=a2+b2=22+(1)2=4+1=5R = \sqrt{a^2 + b^2} = \sqrt{2^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} Thus, the exact value of RR is 5\sqrt{5}.

  2. Find α\alpha: Using the relationship: tanα=12    α=tan1(0.5)26.57\tan \alpha = \frac{-1}{2} \implies \alpha = \tan^{-1}(-0.5) \approx 26.57^\circ

Thus, 2cosθsinθ=5cos(θ+26.57)2 \cos \theta - \sin \theta = \sqrt{5} \cos \left(\theta + 26.57^\circ \right), with the value of R2.24R \approx 2.24 to two decimal places.

Step 2

Solve for $0 < \theta < 360^\circ$

99%

104 rated

Answer

Starting from the equation:

22cosθsinθ=15\frac{2}{2 \cos \theta - \sin \theta} = 15

Multiplying both sides by the denominator yields:

2=15(2cosθsinθ)2 = 15 (2 \cos \theta - \sin \theta) \Rightarrow 15 \sin \theta - 30 \cos \theta = -2 $$

Rearranging gives:

15sinθ30cosθ=215 \sin \theta - 30 \cos \theta = -2

This can now be manipulated based on the earlier form found. Solving yields: θ33.00 and 273.29\theta \approx 33.00^\circ \text{ and } 273.29^\circ

Step 3

Deduce the smallest positive value of $\theta$

96%

101 rated

Answer

From the solutions in part (b), we have:

  • θ133.00\theta_1 \approx 33.00^\circ
  • θ2273.29\theta_2 \approx 273.29^\circ

The smallest positive value of θ\theta for which 22cosθ+sinθ=15\frac{2}{2 \cos \theta + \sin \theta} = 15 is the first solution:

Thus, the answer is 33.033.0^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;