Photo AI

Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$$ to obtain an approximation to $\sqrt{3}$ Give your answer in the form $\frac{a}{b}$ where $a$ and $b$ are integers. - Edexcel - A-Level Maths Pure - Question 3 - 2013 - Paper 9

Question icon

Question 3

Use-the-binomial-expansion-to-show-that--$$\sqrt{\frac{1+x}{1-x}}-=-1-+-x-+-\frac{1}{2}x^2,-\-|x|-<-1$$--(b)-Substitute-$x-=-\frac{1}{26}$-into--$$\sqrt{\frac{1+x}{1-x}}-=-1-+-x-+-\frac{1}{2}x^2$$--to-obtain-an-approximation-to-$\sqrt{3}$--Give-your-answer-in-the-form-$\frac{a}{b}$-where-$a$-and-$b$-are-integers.-Edexcel-A-Level Maths Pure-Question 3-2013-Paper 9.png

Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1... show full transcript

Worked Solution & Example Answer:Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$$ to obtain an approximation to $\sqrt{3}$ Give your answer in the form $\frac{a}{b}$ where $a$ and $b$ are integers. - Edexcel - A-Level Maths Pure - Question 3 - 2013 - Paper 9

Step 1

Use the binomial expansion to show that $\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$

96%

114 rated

Answer

To show that 1+x1x=(1+x)1/2(1x)1/2\sqrt{\frac{1+x}{1-x}} = \frac{(1+x)^{1/2}}{(1-x)^{1/2}} we can apply the binomial expansion on both the numerator and the denominator.

  1. Expand the numerator using the binomial expansion:

    • For (1+x)1/2(1+x)^{1/2}: (1+x)1/21+12x18x2+(1+x)^{1/2} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \cdots
  2. Expand the denominator using the binomial expansion:

    • For (1x)1/2(1-x)^{1/2}: (1x)1/2112x18x2+(1-x)^{1/2} \approx 1 - \frac{1}{2}x - \frac{1}{8}x^2 + \cdots
  3. Combine the expansions:

    • The expression becomes: 1+x1x1+12x18x2112x18x2\sqrt{\frac{1+x}{1-x}} \approx \frac{1 + \frac{1}{2}x - \frac{1}{8}x^2}{1 - \frac{1}{2}x - \frac{1}{8}x^2}
  4. Perform polynomial long division or simplify to get: 1+x+12x2\approx 1 + x + \frac{1}{2}x^2

Hence, we have shown that: 1+x1x=1+x+12x2, x<1\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1

Step 2

Substitute $x = \frac{1}{26}$ into obtain an approximation to $\sqrt{3}$

99%

104 rated

Answer

Substituting x=126x = \frac{1}{26} into the previous result gives:

1+1261126=1+126+12(126)2\sqrt{\frac{1+\frac{1}{26}}{1-\frac{1}{26}}} = 1 + \frac{1}{26} + \frac{1}{2}\left(\frac{1}{26}\right)^2

Calculating this:

  1. Calculate the term: 1+126=26+126=2726 1 + \frac{1}{26} = \frac{26 + 1}{26} = \frac{27}{26}

  2. Calculate the second term: 12(126)2=121676=11352\frac{1}{2}\left(\frac{1}{26}\right)^2 = \frac{1}{2} \cdot \frac{1}{676} = \frac{1}{1352}

  3. Combine: 1+x1x2726+11352\sqrt{\frac{1+x}{1-x}} \approx \frac{27}{26} + \frac{1}{1352} Finding a common denominator: =2752+11352=14051352= \frac{27 \cdot 52 + 1}{1352} = \frac{1405}{1352}

Thus, an approximation to \sqrt{3} is: 314051352\sqrt{3} \approx \frac{1405}{1352}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;