Photo AI

f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; (a) find the value of R and the value of α - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Question icon

Question 8

f(x)-=-7-cos-2x---24-sin-2x--Given-that-f(x)-=-R-cos(2x-+-α),-where-R->-0-and-0-<-α-<-90°;--(a)-find-the-value-of-R-and-the-value-of-α-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 5.png

f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; (a) find the value of R and the value of α. (b) Hence solve the equation... show full transcript

Worked Solution & Example Answer:f(x) = 7 cos 2x - 24 sin 2x Given that f(x) = R cos(2x + α), where R > 0 and 0 < α < 90°; (a) find the value of R and the value of α - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Step 1

find the value of R and the value of α.

96%

114 rated

Answer

To convert the equation to the form R cos(2x + α), we express it as:

f(x)=Rimes(cos(2x)+tan(α)imessin(2x))f(x) = R imes (cos(2x) + tan(α) imes sin(2x))

By comparing coefficients:

  • Coefficient of cos(2x): 7
  • Coefficient of sin(2x): -24

We use the following relationships:

R=sqrt(7)2+(24)2R = \\sqrt{(7)^2 + (-24)^2}

Thus,

R=49+576=625=25R = \sqrt{49 + 576} = \sqrt{625} = 25

To find α, we use:

an(α)=247 an(α) = \frac{-24}{7}

Calculating α gives:

α=tan1(247)α = \tan^{-1}\left(-\frac{24}{7}\right)

This converts to approximately ( 73.7^\circ ) after taking into account the quadrant.

Therefore, we have:

  • R = 25
  • α ≈ 73.7°

Step 2

Hence solve the equation 7 cos 2x - 24 sin 2x = 12.5.

99%

104 rated

Answer

Substituting the value of R and α from part (a), we rewrite the equation as:

25cos(2x+73.7°)=12.525 cos(2x + 73.7°) = 12.5

Dividing both sides by 25:

cos(2x+73.7°)=12.525=0.5cos(2x + 73.7°) = \frac{12.5}{25} = 0.5

Thus:

2x+73.7°=60° extor 2x+73.7°=300°2x + 73.7° = 60°\ ext{ or }\ 2x + 73.7° = 300°

Solving these gives:

  1. For ( 2x + 73.7° = 60°:
    2x = 60° - 73.7°
    2x = -13.7°
    x = -6.85°\ (not in range)\

  2. For ( 2x + 73.7° = 300° :
    2x = 300° - 73.7° \
    2x = 226.3°\
    x = 113.15°\

  3. Since the cosine function has a periodicity of 360°, we find:

2x=420°73.7°  2x=346.3°  x=173.15° Thus,thefinalanswersarex113.2°andx173.2°.2x = 420° - 73.7° \ \ 2x = 346.3° \ \ x = 173.15°\ Thus, the final answers are x ≈ 113.2° and x ≈ 173.2°.

Step 3

Express 14 cos² x - 48 sin x cos x in the form a cos 2x + b sin 2x + c.

96%

101 rated

Answer

We start by using the double angle formulas:

  1. Rewrite cos2xcos² x: cos2x=1+cos(2x)2cos² x = \frac{1 + cos(2x)}{2}

  2. Rewrite sinxcosxsin x cos x: sinxcosx=12sin(2x)sin x cos x = \frac{1}{2} sin(2x)

Plugging these into the expression gives:

14cos2x48sinxcosx=14(1+cos(2x)2)48(12sin(2x))14 cos² x - 48 sin x cos x = 14 \left( \frac{1 + cos(2x)}{2} \right) - 48 \left( \frac{1}{2} sin(2x) \right)

This simplifies to:

=7+7cos(2x)24sin(2x)= 7 + 7 cos(2x) - 24 sin(2x)

Comparing this with the form acos(2x)+bsin(2x)+ca cos(2x) + b sin(2x) + c, we find:

  • a = 7
  • b = -24
  • c = 7.

Step 4

Hence, using your answers to parts (a) and (c), deduce the maximum value of 14 cos² x - 48 sin x cos x.

98%

120 rated

Answer

The maximum value of an expression of the form Rcos(θ)+bsin(θ)+cR cos(θ) + b sin(θ) + c can be determined as follows:

From part (c), we rewrite the expression as:

a cos(2x) + b sin(2x) + c, where

  • a = 7
  • b = -24
  • c = 7

The maximum value of the term acos(θ)+bsin(θ)a cos(θ) + b sin(θ) is given by:

a2+b2=72+(24)2=49+576=625=25\sqrt{a^2 + b^2} = \sqrt{7^2 + (-24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25

Therefore, the maximum value of ( 14 cos^2 x - 48 sin x cos x ) is:

max=25+c=25+7=32max = 25 + c = 25 + 7 = 32

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;