Photo AI

6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 5

Question icon

Question 6

6.-(a)-Express-$3-\sin-x-+-2-\cos-x$-in-the-form-$R-\sin(x-+-\alpha)$-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 6-2007-Paper 5.png

6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. (b) Hence find the greatest value of $(3 \s... show full transcript

Worked Solution & Example Answer:6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 5

Step 1

Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$

96%

114 rated

Answer

To express 3sinx+2cosx3 \sin x + 2 \cos x in the required form, we start by calculating RR.

R=32+22=9+4=13R = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}

Next, we calculate anα an \alpha using:

tanα=coefficient of sinxcoefficient of cosx=32\tan \alpha = \frac{\text{coefficient of } \sin x}{\text{coefficient of } \cos x} = \frac{3}{2}

To find heta=α heta = \alpha, we take:

α=tan1(32)0.588extradians\alpha = \tan^{-1}\left(\frac{3}{2}\right) \approx 0.588 ext{ radians}
Thus, we can rewrite the expression as:

3sinx+2cosx=13sin(x+0.588)3 \sin x + 2 \cos x = \sqrt{13} \sin\left(x + 0.588\right)

Step 2

Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$

99%

104 rated

Answer

The maximum value of 3sinx+2cosx3 \sin x + 2 \cos x occurs when:

Rsin(x+α)=RR \sin(x + \alpha) = R

Thus, the maximum value is:

13\sqrt{13}

Now, to find the greatest value of (3sinx+2cosx)4(3 \sin x + 2 \cos x)^4:

(13)4=132=169\left( \sqrt{13} \right)^4 = 13^2 = 169

Step 3

Solve, for $0 < x < 2\pi$, the equation $3 \sin x + 2 \cos x = 1$

96%

101 rated

Answer

To solve this equation, we rewrite it as:

13sin(x+0.588)=1\sqrt{13} \sin\left(x + 0.588\right) = 1

Next, we simplify to:

sin(x+0.588)=1130.277\sin\left(x + 0.588\right) = \frac{1}{\sqrt{13}}\approx 0.277

Finding the inverse sine gives:

x+0.588=sin1(0.277) or πsin1(0.277)x + 0.588 = \sin^{-1}(0.277) \text{ or } \pi - \sin^{-1}(0.277)

Calculating these yields two values:

  1. x+0.5880.281x + 0.588 \approx 0.281 leading to x0.2810.5880.307x \approx 0.281 - 0.588 \approx -0.307 (not in range)

  2. x+0.5882.862x + 0.588 \approx 2.862 leading to x2.8620.5882.274x \approx 2.862 - 0.588 \approx 2.274

  3. x+0.5883.86x + 0.588 \approx 3.86 leading to x3.860.5883.272x \approx 3.86 - 0.588 \approx 3.272

Thus:

  • x2.274x \approx 2.274 in [0,2π)[0, 2\pi)
  • x3.272x \approx 3.272 in [0,2π)[0, 2\pi)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;