Photo AI

2. (a) Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$$ to obtain an approximation to $\sqrt{3}$ - Edexcel - A-Level Maths Pure - Question 4 - 2013 - Paper 9

Question icon

Question 4

2.-(a)-Use-the-binomial-expansion-to-show-that-$$\sqrt{\frac{1+x}{1-x}}-=-1-+-x-+-\frac{1}{2}x^2,-\-|x|-<-1$$--(b)-Substitute-$x-=-\frac{1}{26}$-into-$$\sqrt{\frac{1+x}{1-x}}-=-1-+-x-+-\frac{1}{2}x^2$$-to-obtain-an-approximation-to-$\sqrt{3}$-Edexcel-A-Level Maths Pure-Question 4-2013-Paper 9.png

2. (a) Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1... show full transcript

Worked Solution & Example Answer:2. (a) Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$ (b) Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$$ to obtain an approximation to $\sqrt{3}$ - Edexcel - A-Level Maths Pure - Question 4 - 2013 - Paper 9

Step 1

Use the binomial expansion to show that $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2, \ |x| < 1$$

96%

114 rated

Answer

To show that 1+x1x\sqrt{\frac{1+x}{1-x}} can be expressed as 1+x+12x21 + x + \frac{1}{2}x^2, we start by rewriting the expression using the binomial theorem: 1+x1x=(1+x)12(1x)12\sqrt{\frac{1+x}{1-x}} = \left(1+x\right)^{\frac{1}{2}} \left(1-x\right)^{-\frac{1}{2}} Applying the binomial expansion for both parts:

  1. For (1+x)12(1+x)^{\frac{1}{2}}:

    1+12x18x2+...\approx 1 + \frac{1}{2}x - \frac{1}{8}x^2 + ...

  2. For (1x)12(1-x)^{-\frac{1}{2}}:

    1+12x+38x2+...\approx 1 + \frac{1}{2}x + \frac{3}{8}x^2 + ...

Multiplying these two expansions together, we focus on the first three terms:

(1+12x18x2)(1+12x+38x2)\left(1 + \frac{1}{2}x - \frac{1}{8}x^2\right) \left(1 + \frac{1}{2}x + \frac{3}{8}x^2\right)

Calculating the product, we find:

1+x+12x2\approx 1 + x + \frac{1}{2} x^2 valid for x<1|x| < 1.

Step 2

Substitute $x = \frac{1}{26}$ into $$\sqrt{\frac{1+x}{1-x}} = 1 + x + \frac{1}{2}x^2$$

99%

104 rated

Answer

To find an approximation for 3\sqrt{3}, we substitute x=126x = \frac{1}{26} into the expression:

  1. Calculate:

    1+126+12(126)21 + \frac{1}{26} + \frac{1}{2}\left(\frac{1}{26}\right)^2

    Step-by-step:

    • The first term is 11.
    • The second term is: 126=126\frac{1}{26} = \frac{1}{26}
    • The third term: 12(126)2=121676=11352\frac{1}{2}\left(\frac{1}{26}\right)^2 = \frac{1}{2} \cdot \frac{1}{676} = \frac{1}{1352}

Combining these results:

1+26676+11352=13521352+266761 + \frac{26}{676} + \frac{1}{1352} = \frac{1352}{1352} + \frac{26}{676}

Converting the second term: 26676=521352\frac{26}{676} = \frac{52}{1352}

Thus, combining all: 1352+521352=14041352\frac{1352 + 52}{1352} = \frac{1404}{1352}

Therefore, the approximation to 3\sqrt{3} is: 314041352\sqrt{3} \approx \frac{1404}{1352} which can be simplified further.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;