Photo AI

Given that $$\frac{13 - 4x}{(2x + 1)(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 5 - 2018 - Paper 9

Question icon

Question 5

Given-that--$$\frac{13---4x}{(2x-+-1)(x-+-3)}-=-\frac{A}{(2x-+-1)}-+-\frac{B}{(2x-+-1)^2}-+-\frac{C}{(x-+-3)}$$--(a)-find-the-values-of-the-constants-A,-B-and-C-Edexcel-A-Level Maths Pure-Question 5-2018-Paper 9.png

Given that $$\frac{13 - 4x}{(2x + 1)(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C. (b... show full transcript

Worked Solution & Example Answer:Given that $$\frac{13 - 4x}{(2x + 1)(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 5 - 2018 - Paper 9

Step 1

find the values of the constants A, B and C.

96%

114 rated

Answer

To find the constants A, B, and C, we start by rewriting the equation:

134x=A(2x+3)(x+3)+B(x+3)+C(2x+1)213 - 4x = A(2x + 3)(x + 3) + B(x + 3) + C(2x + 1)^2

Expanding both sides gives:

  • For AA:

    • Multiply out (2x+1)(x+3)(2x + 1)(x + 3) and collect like terms.
    • This leads to a system of equations after matching coefficients from both sides.
  • Setting up the equations:

    • Constant term: A(3)+B(3)+C(1)=13A(3) + B(3) + C(1) = 13
    • Coefficient of xx: 2A+B+2C=42A + B + 2C = -4

Solving these simultaneous equations, we find:

  1. From the constant term, set C=1C = 1.
  2. Substitute into the coefficient equations.
  3. This yields A=2A = -2, B=6B = 6.

Thus, the values are:

  • A=2A = -2,
  • B=6B = 6,
  • C=1C = 1.

Step 2

Hence find $$\int \frac{13 - 4x}{(2x + 1)(x + 3)} \, dx, \quad x > -\frac{1}{2}$$

99%

104 rated

Answer

Using the constants found, we can rewrite the function:

134x(2x+1)(x+3)=2(2x+1)+6(2x+1)2+1(x+3)\frac{13 - 4x}{(2x + 1)(x + 3)} = \frac{-2}{(2x + 1)} + \frac{6}{(2x + 1)^2} + \frac{1}{(x + 3)}

Now integrate each term separately:

  1. Integrate 2(2x+1)\frac{-2}{(2x + 1)}:

    2(2x+1)dx=2ln2x+1+C1\int \frac{-2}{(2x + 1)} \, dx = -2 \ln|2x + 1| + C_1

  2. Integrate 6(2x+1)2\frac{6}{(2x + 1)^2}:

    6(2x+1)2dx=3(2x+1)1+C2=32x+1+C2\int \frac{6}{(2x + 1)^2} \, dx = -3(2x + 1)^{-1} + C_2 = -\frac{3}{2x + 1} + C_2

  3. Integrate 1(x+3)\frac{1}{(x + 3)}:

    1(x+3)dx=lnx+3+C3\int \frac{1}{(x + 3)} \, dx = \ln|x + 3| + C_3

Combining all these gives:

134x(2x+1)(x+3)dx=2ln2x+132x+1+lnx+3+C\int \frac{13 - 4x}{(2x + 1)(x + 3)} \, dx = -2 \ln|2x + 1| - \frac{3}{2x + 1} + \ln|x + 3| + C

Step 3

Find $$\int (e^x + 1) \, dx$$

96%

101 rated

Answer

To find this integral, we can separate the terms and integrate:

(ex+1)dx=exdx+1dx\int (e^x + 1) \, dx = \int e^x \, dx + \int 1 \, dx

The integral of exe^x is exe^x and the integral of 11 is xx. Thus:

=ex+x+C= e^x + x + C

Step 4

Using the substitution $u^2 = x$, or otherwise, find $$\int \frac{1}{4x + 5x^2} \, dx, \quad x > 0$$

98%

120 rated

Answer

Using the substitution u2=xu^2 = x leads to dx=2ududx = 2u \, du and we change the limits:

Rewrite the integral:

14x+5x2dx=15u4+4u22udu\int \frac{1}{4x + 5x^2} \, dx = \int \frac{1}{5u^4 + 4u^2} 2u \, du

Now factor the denominator:

2uu2(5u+4)du=(25u+485)du\int \frac{2u}{u^2(5u + 4)} \, du = \int \left(\frac{2}{5u + 4} - \frac{8}{5} \right) \, du

Integrating gives:

=25ln5u+485u+C= \frac{2}{5} \ln|5u + 4| - \frac{8}{5}u + C

Finally, substitute back for xx:

=25ln(5x+4)85x+C= \frac{2}{5} \ln(5\sqrt{x} + 4) - \frac{8}{5}\sqrt{x} + C

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;