Photo AI

The line $l_1$ has vector equation $$ extbf{r} = 8 extbf{i} + 12 extbf{j} + 14 extbf{k} + \lambda ( extbf{i} - extbf{j} - extbf{k}) $$ where $\lambda$ is a parameter - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 7

Question icon

Question 8

The-line-$l_1$-has-vector-equation--$$--extbf{r}-=-8-extbf{i}-+-12-extbf{j}-+-14-extbf{k}-+-\lambda-(--extbf{i}----extbf{j}----extbf{k})-$$--where-$\lambda$-is-a-parameter-Edexcel-A-Level Maths Pure-Question 8-2006-Paper 7.png

The line $l_1$ has vector equation $$ extbf{r} = 8 extbf{i} + 12 extbf{j} + 14 extbf{k} + \lambda ( extbf{i} - extbf{j} - extbf{k}) $$ where $\lambda$ is a par... show full transcript

Worked Solution & Example Answer:The line $l_1$ has vector equation $$ extbf{r} = 8 extbf{i} + 12 extbf{j} + 14 extbf{k} + \lambda ( extbf{i} - extbf{j} - extbf{k}) $$ where $\lambda$ is a parameter - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 7

Step 1

(a) Find the values of $a$ and $b$

96%

114 rated

Answer

To find the values of aa and bb, we first substitute the coordinates of point A and point B into the line equation.

For point A, we have: (4,8,a)=(8,12,14)+λ(1,1,1)(4, 8, a) = (8, 12, 14) + \lambda (1, -1, -1)

This gives us the system of equations:

  1. 8+λ=48 + \lambda = 4
  2. 12λ=812 - \lambda = 8
  3. 14λ=a14 - \lambda = a

Solving the first equation, we find: λ=48=4\lambda = 4 - 8 = -4

Now substituting λ=4\lambda = -4 into the second equation, we find: 12(4)=812 - (-4) = 8

This is valid, and now substituting λ=4\lambda = -4 into the third equation: 14(4)=a    a=14+4=1814 - (-4) = a \implies a = 14 + 4 = 18

Now for point B, substituting coordinates (bb, 13, 13): (b,13,13)=(8,12,14)+μ(1,1,1)(b, 13, 13) = (8, 12, 14) + \mu (1, -1, -1)

Giving us:

  1. 8+μ=b8 + \mu = b
  2. 12μ=1312 - \mu = 13
  3. 14μ=1314 - \mu = 13

From the second equation: μ=1213=1\mu = 12 - 13 = -1

Now substituting μ=1\mu = -1 into the first equation: 81=b    b=81=78 - 1 = b \implies b = 8 - 1 = 7

Thus, we have found:

  • a=18a = 18
  • b=7b = 7.

Step 2

(b) find the coordinates of P

99%

104 rated

Answer

Since OP is perpendicular to the line l1l_1, we need to use the direction ratios of the line to establish the relationship. The direction ratios for line l1l_1 are from the vector (1,1,1)(1, -1, -1): d=(1,1,1)\textbf{d} = (1, -1, -1)

Let the coordinates of point P be (xp,yp,zp)(x_p, y_p, z_p), and since P lies on the line we can express it as: (xp,yp,zp)=(8,12,14)+λ(1,1,1)(x_p, y_p, z_p) = (8, 12, 14) + \lambda (1, -1, -1)

Thus:

  1. xp=8+λx_p = 8 + \lambda
  2. yp=12λy_p = 12 - \lambda
  3. zp=14λz_p = 14 - \lambda

Since OP is perpendicular to l1l_1, we have: OPd=0\textbf{OP} \cdot \textbf{d} = 0

The vector OP is given by: OP=(xp,yp,zp)(0,0,0)=(xp,yp,zp)\textbf{OP} = (x_p, y_p, z_p) - (0, 0, 0) = (x_p, y_p, z_p)

Now substituting from our equations: (8+λ,12λ,14λ)(1,1,1)=0(8 + \lambda, 12 - \lambda, 14 - \lambda) \cdot (1, -1, -1) = 0

This leads to: (8+λ)(12λ)(14λ)=0    λ+81214=0(8 + \lambda) - (12 - \lambda) - (14 - \lambda) = 0 \implies \lambda + 8 - 12 - 14 = 0

Solving yields: λ=18\lambda = 18

Now substituting λ\lambda back into the equations for P gives:

  1. xp=8+18=26x_p = 8 + 18 = 26
  2. yp=1218=6y_p = 12 - 18 = -6
  3. zp=1418=4z_p = 14 - 18 = -4

Thus, the coordinates of P are: P(26,6,4)P(26, -6, -4).

Step 3

(c) Hence find the distance OP, giving your answer as a simplified surd

96%

101 rated

Answer

To find the distance OP, we can use the distance formula:

OP=(xp0)2+(yp0)2+(zp0)2OP = \sqrt{(x_p - 0)^2 + (y_p - 0)^2 + (z_p - 0)^2}

Substituting the coordinates of P: OP=(260)2+(60)2+(40)2OP = \sqrt{(26 - 0)^2 + (-6 - 0)^2 + (-4 - 0)^2} =262+(6)2+(4)2= \sqrt{26^2 + (-6)^2 + (-4)^2} =676+36+16= \sqrt{676 + 36 + 16} =728= \sqrt{728}

We can factor this as: =3620.222...=620.222...=142= \sqrt{36 \cdot 20.222...} = 6\sqrt{20.222...} = 14\sqrt{2}

Hence the distance OP is: OP=142OP = 14\sqrt{2}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;