Photo AI

f(x) = \frac{3x - 1}{(1 - 2x)^{2}} \quad |x| < \frac{1}{2} - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 6

Question icon

Question 4

f(x)-=-\frac{3x---1}{(1---2x)^{2}}--\quad-|x|-<-\frac{1}{2}-Edexcel-A-Level Maths Pure-Question 4-2006-Paper 6.png

f(x) = \frac{3x - 1}{(1 - 2x)^{2}} \quad |x| < \frac{1}{2}. Given that, for $x \neq \frac{1}{2},$ \n\frac{3x - 1}{(1 - 2x)^{2}} = \frac{A}{(1 - 2x)^{3}} + \frac{B}... show full transcript

Worked Solution & Example Answer:f(x) = \frac{3x - 1}{(1 - 2x)^{2}} \quad |x| < \frac{1}{2} - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 6

Step 1

find the values of A and B.

96%

114 rated

Answer

To find the values of A and B, we first equate the two expressions.

Given the equation: 3x1=A(12x)+B(12x)23x - 1 = A(1 - 2x) + B(1 - 2x)^{2} We can expand the right-hand side:

  1. Expand: A(12x)+B(12x)2=A2Ax+B(14x+4x2)A(1 - 2x) + B(1 - 2x)^{2} = A - 2Ax + B(1 - 4x + 4x^{2})
    =A+B(2A+4B)x+4Bx2= A + B - (2A + 4B)x + 4Bx^{2}

  2. Combine like terms to equate coefficients:

    • The constant term gives us: A+B=1A + B = -1
    • The coefficient of x gives us: (2A+4B)=3-(2A + 4B) = 3
  3. Solving these two equations:

    • From the first equation, we can express B in terms of A: B=1AB = -1 - A
    • Substitute B into the second equation: (2A+4(1A))=3-(2A + 4(-1 - A)) = 3 2A+4+4A=3-2A + 4 + 4A = 3 2A=12A = -1 A=12A = -\frac{1}{2}
    • Substitute back to find B: B=1(12)=12B = -1 - (-\frac{1}{2}) = -\frac{1}{2}

Thus, the values are: A=12,B=12A = -\frac{1}{2}, B = -\frac{1}{2}

Step 2

Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in $x^{3}$, simplifying each term.

99%

104 rated

Answer

To find the series expansion of f(x), we will first rewrite f(x) with the values of A and B we found:

f(x)=3x1(12x)2=12(12x)3+12(12x)2f(x) = \frac{3x - 1}{(1 - 2x)^{2}} = \frac{-\frac{1}{2}}{(1 - 2x)^{3}} + \frac{-\frac{1}{2}}{(1 - 2x)^{2}}

Then, we will apply the binomial series expansion:

  1. The binomial expansion for ( (1 - u)^{-n} ) is: (1u)n=k=0(n+k1k)uk(1 - u)^{-n} = \sum_{k=0}^{\infty} \binom{n + k - 1}{k} u^{k} Valid for |u| < 1

  2. For our case, using ( u = 2x ):

    • For ( (1 - 2x)^{-2} ): (12x)2=k=0(1+kk)(2x)k=1+4x+12x2+32x3+(1 - 2x)^{-2} = \sum_{k=0}^{\infty} \binom{1+k}{k} (2x)^{k} = 1 + 4x + 12x^{2} + 32x^{3} + \ldots

    • For ( (1 - 2x)^{-3} ): (12x)3=k=0(2+kk)(2x)k=1+6x+24x2+64x3+(1 - 2x)^{-3} = \sum_{k=0}^{\infty} \binom{2+k}{k} (2x)^{k} = 1 + 6x + 24x^{2} + 64x^{3} + \ldots

  3. Combining the results:

    • Therefore, substituting these into our function gives: f(x)=12[1+6x+24x2+64x3+]12[1+4x+12x2+32x3+]f(x) = -\frac{1}{2} \left[1 + 6x + 24x^{2} + 64x^{3} + \ldots\right] - \frac{1}{2} \left[1 + 4x + 12x^{2} + 32x^{3} + \ldots\right]
    • Simplifying: =12(2+10x+36x2+96x3)= -\frac{1}{2}(2 + 10x + 36x^{2} + 96x^{3}) =15x18x248x3= -1 - 5x - 18x^{2} - 48x^{3}

a final result: f(x)=15x18x248x3f(x) = -1 - 5x - 18x^{2} - 48x^{3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;