Photo AI

Use the binomial theorem to expand $ ext{ } ext { } ext{ } ext{ } (4-9x)^{ rac{1}{2}} $ $|x| < rac{4}{9}$, in ascending powers of $x$, up to and including the term in $x^{3}$, simplifying each term. - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 6

Question icon

Question 3

Use-the-binomial-theorem-to-expand--$--ext{-}--ext-{-}--ext{-}--ext{-}-(4-9x)^{-rac{1}{2}}-$--$|x|-<--rac{4}{9}$,-in-ascending-powers-of-$x$,-up-to-and-including-the-term-in-$x^{3}$,-simplifying-each-term.-Edexcel-A-Level Maths Pure-Question 3-2005-Paper 6.png

Use the binomial theorem to expand $ ext{ } ext { } ext{ } ext{ } (4-9x)^{ rac{1}{2}} $ $|x| < rac{4}{9}$, in ascending powers of $x$, up to and including the... show full transcript

Worked Solution & Example Answer:Use the binomial theorem to expand $ ext{ } ext { } ext{ } ext{ } (4-9x)^{ rac{1}{2}} $ $|x| < rac{4}{9}$, in ascending powers of $x$, up to and including the term in $x^{3}$, simplifying each term. - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 6

Step 1

Expand $(4-9x)^{ rac{1}{2}}$ using the binomial theorem

96%

114 rated

Answer

We begin by identifying the binomial expansion formula:

(a + b)^n = inom{n}{0} a^n b^0 + inom{n}{1} a^{n-1} b + inom{n}{2} a^{n-2} b^2 + inom{n}{3} a^{n-3} b^3 + ...

For our case, set:

  • a=4a = 4,
  • b=9xb = -9x,
  • n = rac{1}{2}.

Using the binomial theorem, we get:

(4 - 9x)^{ rac{1}{2}} = 4^{ rac{1}{2}} + inom{ rac{1}{2}}{1} 4^{ rac{1}{2}-1} (-9x) + inom{ rac{1}{2}}{2} 4^{ rac{1}{2}-2} (-9x)^2 + inom{ rac{1}{2}}{3} 4^{ rac{1}{2}-3} (-9x)^3 + ...

Calculating the terms:

  • First term: 4^{ rac{1}{2}} = 2.
  • Second term: inom{ rac{1}{2}}{1} = rac{1}{2}; ext{ so, } rac{1}{2} imes 2^{-1} imes (-9x) = - rac{9x}{4}.
  • Third term: inom{ rac{1}{2}}{2} = rac{ rac{1}{2} imes rac{- rac{1}{2}}{2}}{2!} = - rac{1}{8}; ext{ so, } - rac{1}{8} imes 4^{-1} imes 81x^2 = - rac{81}{32} x^2.
  • Fourth term: inom{ rac{1}{2}}{3} = rac{ rac{1}{2} imes (- rac{1}{2}) imes (- rac{3}{2})}{3!} = rac{1}{16}; ext{ so, } rac{1}{16} imes 4^{- rac{3}{2}} imes (-729x^3) = - rac{729}{512} x^3.

Combining these, we have:

(4-9x)^{ rac{1}{2}} = 2 - rac{9x}{4} - rac{81}{32} x^2 - rac{729}{512} x^3 + ...

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;