Photo AI

Using the substitution $u^2 = 2x - 1$, or otherwise, find the exact value of $$\int_{1}^{3} \frac{3x}{\sqrt{2x-1}} \, dx.$$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 7

Question icon

Question 5

Using-the-substitution-$u^2-=-2x---1$,-or-otherwise,-find-the-exact-value-of---$$\int_{1}^{3}-\frac{3x}{\sqrt{2x-1}}-\,-dx.$$-Edexcel-A-Level Maths Pure-Question 5-2006-Paper 7.png

Using the substitution $u^2 = 2x - 1$, or otherwise, find the exact value of $$\int_{1}^{3} \frac{3x}{\sqrt{2x-1}} \, dx.$$

Worked Solution & Example Answer:Using the substitution $u^2 = 2x - 1$, or otherwise, find the exact value of $$\int_{1}^{3} \frac{3x}{\sqrt{2x-1}} \, dx.$$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 7

Step 1

Substitution $u^2 = 2x - 1$

96%

114 rated

Answer

To begin, we use the substitution:
u2=2x1.u^2 = 2x - 1.
This implies that x=u2+12.x = \frac{u^2 + 1}{2}.
Next, we differentiate:
dudx=12x1.\frac{du}{dx} = \frac{1}{\sqrt{2x - 1}}.
Thus, we have:
dx=du2x1=duu.dx = \frac{du}{\sqrt{2x - 1}} = \frac{du}{u}.
Now, we need to change the limits of integration.
When x=1x = 1, u2=1u^2 = 1, so u=1u = 1.
When x=3x = 3, u2=5u^2 = 5, so u=5.u = \sqrt{5}.

Step 2

Rewrite the Integral

99%

104 rated

Answer

We can now rewrite our integral:
133x2x1dx=153u2+12uduu=3215(u+1u)du.\int_{1}^{3} \frac{3x}{\sqrt{2x - 1}} \, dx = \int_{1}^{\sqrt{5}} \frac{3 \cdot \frac{u^2 + 1}{2}}{u} \cdot \frac{du}{u} = \frac{3}{2} \int_{1}^{\sqrt{5}} (u + \frac{1}{u}) \, du.

Step 3

Integrate the Expression

96%

101 rated

Answer

Now we can integrate:
(u+1u)du=u22+lnu+C.\int (u + \frac{1}{u}) \, du = \frac{u^2}{2} + \ln |u| + C.
Thus, the integral evaluates to:
32[u22+lnu]15.\frac{3}{2} \left[ \frac{u^2}{2} + \ln |u| \right]_{1}^{\sqrt{5}}.

Step 4

Evaluate the Limits

98%

120 rated

Answer

Substituting the limits into our expression gives:
32(52+ln5(12+ln1))=32(5212+ln5)=32(2+12ln(5)).\frac{3}{2} \left( \frac{5}{2} + \ln |\sqrt{5}| - \left( \frac{1}{2} + \ln |1| \right) \right) = \frac{3}{2} \left( \frac{5}{2} - \frac{1}{2} + \ln |\sqrt{5}| \right) = \frac{3}{2} \left( 2 + \frac{1}{2} \ln(5) \right).

Step 5

Final Simplification

97%

117 rated

Answer

Finally, simplifying gives us the exact value:
322+34ln(5)=3+34ln(5).\frac{3}{2} \cdot 2 + \frac{3}{4} \ln(5) = 3 + \frac{3}{4} \ln(5).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;