Photo AI

Use calculus to find the exact value of $$\int (3x^2 + 5 + \frac{4}{x^2}) \, dx.$$ - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 2

Question icon

Question 4

Use-calculus-to-find-the-exact-value-of-$$\int-(3x^2-+-5-+-\frac{4}{x^2})-\,-dx.$$-Edexcel-A-Level Maths Pure-Question 4-2006-Paper 2.png

Use calculus to find the exact value of $$\int (3x^2 + 5 + \frac{4}{x^2}) \, dx.$$

Worked Solution & Example Answer:Use calculus to find the exact value of $$\int (3x^2 + 5 + \frac{4}{x^2}) \, dx.$$ - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 2

Step 1

Integrate the function

96%

114 rated

Answer

To find the integral, we will integrate each term of the function separately:

(3x2+5+4x2)dx=3x2dx+5dx+4x2dx.\int (3x^2 + 5 + \frac{4}{x^2}) \, dx = \int 3x^2 \, dx + \int 5 \, dx + \int \frac{4}{x^2} \, dx.

  1. For 3x2dx\int 3x^2 \, dx, using the power rule: =3x33=x3.= \frac{3x^{3}}{3} = x^3.

  2. For 5dx\int 5 \, dx: =5x.= 5x.

  3. For 4x2dx\int \frac{4}{x^2} \, dx: =4x2dx=4(1x)=4x.= 4 \int x^{-2} \, dx = 4 \cdot \left(-\frac{1}{x}\right) = -\frac{4}{x}.

Putting it all together, we have:

(3x2+5+4x2)dx=x3+5x4x+C\int (3x^2 + 5 + \frac{4}{x^2}) \, dx = x^3 + 5x - \frac{4}{x} + C

Step 2

Evaluate the definite integral

99%

104 rated

Answer

We use the Fundamental Theorem of Calculus to evaluate the definite integral:

Let’s assume we want to evaluate from x=1x = 1 to x=2x = 2. We substitute these limits into our integrated function:

  1. Substitute with x=2x = 2: f(2)=(23)+5(2)42=8+102=16.f(2) = (2^3) + 5(2) - \frac{4}{2} = 8 + 10 - 2 = 16.

  2. Substitute with x=1x = 1: f(1)=(13)+5(1)41=1+54=2.f(1) = (1^3) + 5(1) - \frac{4}{1} = 1 + 5 - 4 = 2.

Now we find the value of the definite integral:

12(3x2+5+4x2)dx=f(2)f(1)=162=14.\int_{1}^{2} (3x^2 + 5 + \frac{4}{x^2}) \, dx = f(2) - f(1) = 16 - 2 = 14.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;