Photo AI

Figure 1 shows a sketch of part of the curve with equation $$y = \frac{(x + 2)^{\frac{3}{2}}}{4}$$ where $$x > -2$$ - Edexcel - A-Level Maths Pure - Question 3 - 2018 - Paper 4

Question icon

Question 3

Figure-1-shows-a-sketch-of-part-of-the-curve-with-equation--$$y-=-\frac{(x-+-2)^{\frac{3}{2}}}{4}$$--where-$$x->--2$$-Edexcel-A-Level Maths Pure-Question 3-2018-Paper 4.png

Figure 1 shows a sketch of part of the curve with equation $$y = \frac{(x + 2)^{\frac{3}{2}}}{4}$$ where $$x > -2$$. The finite region $$R$$, shown shaded in Figu... show full transcript

Worked Solution & Example Answer:Figure 1 shows a sketch of part of the curve with equation $$y = \frac{(x + 2)^{\frac{3}{2}}}{4}$$ where $$x > -2$$ - Edexcel - A-Level Maths Pure - Question 3 - 2018 - Paper 4

Step 1

Complete the table, giving values of y corresponding to x = 2 and x = 6

96%

114 rated

Answer

To find the values of yy corresponding to the given values of xx, we will plug in the values into the equation:

  1. For x=2x = 2:

    y=(2+2)324=(4)324=84=2y = \frac{(2 + 2)^{\frac{3}{2}}}{4} = \frac{(4)^{\frac{3}{2}}}{4} = \frac{8}{4} = 2.

  2. For x=6x = 6:

    y=(6+2)324=(8)324=1624=42y = \frac{(6 + 2)^{\frac{3}{2}}}{4} = \frac{(8)^{\frac{3}{2}}}{4} = \frac{16√2}{4} = 4√2.

Thus, the completed table is:

xx2-222661010
yy0022424√2636√3

Step 2

Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for the area of R

99%

104 rated

Answer

To calculate the area of region RR, we will use the trapezium rule with the values obtained from the table.

The area AA is given by the formula:

A=12h×(y0+2y1+2y2+yn)A = \frac{1}{2}h \times (y_0 + 2y_1 + 2y_2 + y_n)

Where:

  • hh is the width of each segment (step size), which is 22 for this case
  • y0=0y_0 = 0, y1=2y_1 = 2, y2=42y_2 = 4√2, y3=63y_3 = 6√3

This gives us:

  1. The width h=2h = 2 for each interval.

  2. Therefore:

    A=12×2×(0+2(2)+2(42)+63)A = \frac{1}{2} \times 2 \times (0 + 2(2) + 2(4√2) + 6√3) A=1(0+4+82+63)A = 1 (0 + 4 + 8√2 + 6√3) A=4+82+63A = 4 + 8√2 + 6√3

Calculating:

  • Approximate 8211.31378√2 \approx 11.3137
  • 6310.39236√3 \approx 10.3923

Thus:

A4+11.3137+10.392325.706A \approx 4 + 11.3137 + 10.3923 \approx 25.706

Rounding to 3 decimal places:

A25.706A \approx 25.706.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;