Photo AI

Figure 6 shows a sketch of the curve C with parametric equations $x = 2 an t + 1$ $y = 2 ext{sec}^2 t + 3$ $- rac{ au}{4} \, ext{≤} \, t \, ext{≤} \, rac{ au}{3}$ The line l is the normal to C at the point P where $t = rac{ au}{4}$ - Edexcel - A-Level Maths Pure - Question 1 - 2021 - Paper 1

Question icon

Question 1

Figure-6-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-2--an-t-+-1$--$y-=-2--ext{sec}^2-t-+-3$--$--rac{-au}{4}-\,--ext{≤}-\,-t-\,--ext{≤}-\,--rac{-au}{3}$--The-line-l-is-the-normal-to-C-at-the-point-P-where-$t-=--rac{-au}{4}$-Edexcel-A-Level Maths Pure-Question 1-2021-Paper 1.png

Figure 6 shows a sketch of the curve C with parametric equations $x = 2 an t + 1$ $y = 2 ext{sec}^2 t + 3$ $- rac{ au}{4} \, ext{≤} \, t \, ext{≤} \, rac{ au... show full transcript

Worked Solution & Example Answer:Figure 6 shows a sketch of the curve C with parametric equations $x = 2 an t + 1$ $y = 2 ext{sec}^2 t + 3$ $- rac{ au}{4} \, ext{≤} \, t \, ext{≤} \, rac{ au}{3}$ The line l is the normal to C at the point P where $t = rac{ au}{4}$ - Edexcel - A-Level Maths Pure - Question 1 - 2021 - Paper 1

Step 1

Using parametric differentiation, show that an equation for l is

96%

114 rated

Answer

To find the normal to the curve at the point where t=π4t = \frac{\pi}{4}, we first compute the derivatives:

  1. Differentiate the parametric equations:

    • For xx:
      dxdt=2extsec2(t)\frac{dx}{dt} = 2 ext{sec}^2(t)
    • For yy:
      dydt=4extsec2(t)tan(t)\frac{dy}{dt} = 4 ext{sec}^2(t) \tan(t)
  2. At t=π4t = \frac{\pi}{4}, find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

    • dxdt=2(2)=4\frac{dx}{dt} = 2(2) = 4
    • dydt=4(2)(1)=8\frac{dy}{dt} = 4(2)(1) = 8
  3. Calculate the slope of the tangent line: m=dy/dtdx/dt=84=2m = \frac{dy/dt}{dx/dt} = \frac{8}{4} = 2

  4. The slope of the normal line is the negative reciprocal: mnormal=12m_{normal} = -\frac{1}{2}

  5. Find the coordinates of the point P:

    • x=2tan(π4)+1=3x = 2\tan(\frac{\pi}{4}) + 1 = 3
    • y=2sec2(π4)+3=5y = 2\sec^2(\frac{\pi}{4}) + 3 = 5
  6. Using the point-slope form of the line: yy1=m(xx1)y - y_1 = m(x - x_1) y5=12(x3)y - 5 = -\frac{1}{2}(x - 3)

    This simplifies to: y=12x+32+5=12x+132y = -\frac{1}{2}x + \frac{3}{2} + 5 = -\frac{1}{2}x + \frac{13}{2}

    Therefore, this can be rearranged to find the required normal line equation: y=12x+172y = \frac{1}{2}x + \frac{17}{2}

Step 2

Show that all points on C satisfy the equation

99%

104 rated

Answer

To show that all points satisfy y=12(x1)+5y = \frac{1}{2}(x - 1) + 5:

  1. From the parametric equations, start from:

    • x=2tan(t)+1x = 2\tan(t) + 1
    • Rearranging gives: tan(t)=x12\tan(t) = \frac{x - 1}{2}
  2. Substitute this value into yy:

    • y=2sec2(t)+3y = 2\sec^2(t) + 3
    • Using the identity sec2(t)=1+tan2(t)\sec^2(t) = 1 + \tan^2(t), we have:

    sec2(t)=1+(x12)2=1+(x1)24\sec^2(t) = 1 + \left(\frac{x - 1}{2}\right)^2 = 1 + \frac{(x - 1)^2}{4}

  3. Thus: y=2(1+(x1)24)+3y = 2\left(1 + \frac{(x - 1)^2}{4}\right) + 3

    Simplifying gives: y=2+(x1)22+3=12(x1)2+5y = 2 + \frac{(x - 1)^2}{2} + 3 = \frac{1}{2}(x - 1)^2 + 5

  4. Therefore, all points on curve C satisfy the equation:
    y=12(x1)+5y = \frac{1}{2}(x - 1) + 5

Step 3

Find the range of possible values for k.

96%

101 rated

Answer

To find the values of kk such that the line intersects the curve at two distinct points:

  1. Set the equations equal to each other:

    • 12x+k=2sec2(t)+3\frac{1}{2}x + k = 2\sec^2(t) + 3
    • Substitute x=2tan(t)+1x = 2\tan(t) + 1:
      12(2tan(t)+1)+k=2sec2(t)+3\frac{1}{2}(2\tan(t) + 1) + k = 2\sec^2(t) + 3
  2. Rearranging gives: tan(t)+12+k=2(1+tan2(t))+3\tan(t) + \frac{1}{2} + k = 2(1 + \tan^2(t)) + 3

  3. Transforming into a quadratic in terms of tan(t)\tan(t) leads to:

    • 2tan2(t)tan(t)+(2+k3.5)=02\tan^2(t) - \tan(t) + (2 + k - 3.5) = 0
  4. For this quadratic to have two distinct solutions, the discriminant must be greater than zero: b24ac>0b^2 - 4ac > 0

  5. Use the discriminant:

    • (1)24(2)(k1.5)>0(-1)^2 - 4(2)(k - 1.5) > 0
  6. Simplifying leads to: 18(k1.5)>01 - 8(k - 1.5) > 0 18k+12>01 - 8k + 12 > 0 138k>013 - 8k > 0

  7. This results in: k<138k < \frac{13}{8}

Therefore, the range of possible values for kk is: k<1.625k < 1.625

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;