Photo AI

1. (a) By writing sin 30° as sin (2θ + θ), show that sin 30° = 3sin θ - 4sin³ θ - Edexcel - A-Level Maths Pure - Question 2 - 2007 - Paper 6

Question icon

Question 2

1.-(a)-By-writing-sin-30°-as-sin-(2θ-+-θ),-show-that--sin-30°-=-3sin-θ---4sin³-θ-Edexcel-A-Level Maths Pure-Question 2-2007-Paper 6.png

1. (a) By writing sin 30° as sin (2θ + θ), show that sin 30° = 3sin θ - 4sin³ θ. (b) Given that sin θ = \( \frac{\sqrt{3}}{4} \), find the exact value of sin 30°.

Worked Solution & Example Answer:1. (a) By writing sin 30° as sin (2θ + θ), show that sin 30° = 3sin θ - 4sin³ θ - Edexcel - A-Level Maths Pure - Question 2 - 2007 - Paper 6

Step 1

By writing sin 30° as sin (2θ + θ), show that

96%

114 rated

Answer

To show that sin 30° can be expressed as 3sin θ - 4sin³ θ, we start by using the angle addition formula:

sin(2heta+heta)=sin2hetacosθ+cos2hetasinθsin(2 heta + heta) = sin 2 heta \cdot cos \theta + cos 2 heta \cdot sin \theta

Where:

  • We know that ( sin 2 heta = 2sin \theta \cdot cos \theta ) and ( cos 2 heta = 1 - 2sin^2 \theta ).

Substituting these into the equation gives:

sin(2heta+θ)=(2sinθcosθ)cosθ+(12sin2θ)sinθsin(2 heta + \theta) = (2sin \theta \cdot cos \theta) \cdot cos \theta + (1 - 2sin^2 \theta) \cdot sin \theta

This simplifies to:

=2sinθcos2θ+sinθ2sin3θ= 2sin \theta \cdot cos^2 \theta + sin \theta - 2sin^3 \theta

Now, recognizing that ( cos^2 \theta = 1 - sin^2 \theta ) leads to:

=2sinθ(1sin2θ)+sinθ2sin3θ= 2sin \theta \cdot (1 - sin^2 \theta) + sin \theta - 2sin^3 \theta

Expanding this results in:

=2sinθ2sin3θ+sinθ2sin3θ= 2sin \theta - 2sin^3 \theta + sin \theta - 2sin^3 \theta

Combining like terms gives:

sin30°=3sinθ4sin3θsin 30° = 3sin \theta - 4sin^3 \theta

This concludes the proof.

Step 2

Given that sin θ = \( \frac{\sqrt{3}}{4} \), find the exact value of sin 30°.

99%

104 rated

Answer

Given that ( sin \theta = \frac{\sqrt{3}}{4} ), we can substitute this value into our previously derived equation:

sin30°=3344(34)3sin 30° = 3 \cdot \frac{\sqrt{3}}{4} - 4 \left(\frac{\sqrt{3}}{4}\right)^3

Calculating the first term:

=334= \frac{3\sqrt{3}}{4}

For the second term, we first evaluate ( \left(\frac{\sqrt{3}}{4}\right)^3 ):

=3364= \frac{3\sqrt{3}}{64}

Now substituting back gives us:

sin30°=33443364sin 30° = \frac{3\sqrt{3}}{4} - 4 \cdot \frac{3\sqrt{3}}{64}

Simplifying the second term:

=3343316= \frac{3\sqrt{3}}{4} - \frac{3\sqrt{3}}{16}

To combine these fractions, we convert ( \frac{3\sqrt{3}}{4} ) to a fraction with the same denominator:

=123163316= \frac{12\sqrt{3}}{16} - \frac{3\sqrt{3}}{16}

Finally:

sin30°=9316sin 30° = \frac{9\sqrt{3}}{16}

This is the exact value of sin 30°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;