Photo AI

Figure 2 shows a sketch of the curve with equation $y = ext{sqrt}(3-x)(x + 1)$, $0 \, \leq \,, x \,, \leq 3$ The finite region $R$, shown shaded in Figure 2, is bounded by the curve, the $x$-axis, and the $y$-axis - Edexcel - A-Level Maths Pure - Question 8 - 2015 - Paper 4

Question icon

Question 8

Figure-2-shows-a-sketch-of-the-curve-with-equation--$y-=--ext{sqrt}(3-x)(x-+-1)$,--$0-\,-\leq-\,,-x-\,,-\leq-3$--The-finite-region-$R$,-shown-shaded-in-Figure-2,-is-bounded-by-the-curve,-the-$x$-axis,-and-the-$y$-axis-Edexcel-A-Level Maths Pure-Question 8-2015-Paper 4.png

Figure 2 shows a sketch of the curve with equation $y = ext{sqrt}(3-x)(x + 1)$, $0 \, \leq \,, x \,, \leq 3$ The finite region $R$, shown shaded in Figure 2, is ... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve with equation $y = ext{sqrt}(3-x)(x + 1)$, $0 \, \leq \,, x \,, \leq 3$ The finite region $R$, shown shaded in Figure 2, is bounded by the curve, the $x$-axis, and the $y$-axis - Edexcel - A-Level Maths Pure - Question 8 - 2015 - Paper 4

Step 1

Use the substitution $x = 1 + 2 \sin \theta$

96%

114 rated

Answer

To evaluate the integral, we first compute the differential: dx=2cosθdθdx = 2 \cos \theta \, d\theta

Next, substitute x=1+2sinθx = 1 + 2 \sin \theta into the integrand: 3x=3(1+2sinθ)=22sinθ=2(1sinθ)3 - x = 3 - (1 + 2 \sin \theta) = 2 - 2 \sin \theta = 2(1 - \sin \theta) x+1=(1+2sinθ)+1=2+2sinθ=2(1+sinθ)x + 1 = (1 + 2 \sin \theta) + 1 = 2 + 2 \sin \theta = 2(1 + \sin \theta) Thus, (3x)(x+1)=2(1sinθ)2(1+sinθ)=2(1sinθ)(1+sinθ)=21sin2θ=2cosθ\sqrt{(3 - x)(x + 1)} = \sqrt{2(1 - \sin \theta) \cdot 2(1 + \sin \theta)} = 2 \sqrt{(1 - \sin \theta)(1 + \sin \theta)} = 2 \sqrt{1 - \sin^2 \theta} = 2 \cos \theta

Now, substituting everything into the integral gives: 03(3x)(x+1)dx=π6π2(2cosθ)(2cosθ)(2cosθ)dθ=kπ6π2cos2θdθ\int_{0}^{3} \sqrt{(3 - x)(x + 1)} \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (2 \cos \theta)(2 \cos \theta) (2 \cos \theta) d\theta = k \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta This results in: 03(3x)(x+1)dx=4kπ6π2cos2θdθ\int_{0}^{3}\sqrt{(3-x)(x + 1)} \, dx = 4k \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta

Step 2

Hence find, by integration, the exact area of $R$

99%

104 rated

Answer

To find the area AA of region RR, we use the integral evaluated previously: A=4kπ6π2cos2θdθA = 4k \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta

Using the identity for cos2θ\,\cos^2 \theta, we have: cos2θdθ=12(θ+12sin(2θ))\int \cos^2 \theta \, d\theta = \frac{1}{2} (\theta + \frac{1}{2} \sin(2\theta))

Thus: π6π2cos2θdθ=[12(θ+12sin(2θ))]π6π2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta = \left[ \frac{1}{2} \left( \theta + \frac{1}{2} \sin(2\theta) \right) \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} Substituting the limits gives: 12(π2+12sin(π)(π6+12sin(π3)))\frac{1}{2} \left( \frac{\pi}{2} + \frac{1}{2}\sin(\pi) - \left( \frac{\pi}{6} + \frac{1}{2}\sin(\frac{\pi}{3}) \right) \right) This simplifies to find the area as: A=4k3(π2π6+123)A = \frac{4k}{3} \cdot \left( \frac{\pi}{2} - \frac{\pi}{6} + \frac{1}{2\sqrt{3}} \right)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;