Photo AI

5. (a) Differentiate $$ rac{ ext{cos} \, 2x}{ ext{√}x}$$ with respect to x - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 8

Question icon

Question 7

5.-(a)-Differentiate--$$-rac{-ext{cos}-\,-2x}{-ext{√}x}$$--with-respect-to-x-Edexcel-A-Level Maths Pure-Question 7-2013-Paper 8.png

5. (a) Differentiate $$ rac{ ext{cos} \, 2x}{ ext{√}x}$$ with respect to x. (b) Show that $$\frac{d}{dx}(\sec^2 \, 3x)$$ can be written in the form $$\mu(\tan ... show full transcript

Worked Solution & Example Answer:5. (a) Differentiate $$ rac{ ext{cos} \, 2x}{ ext{√}x}$$ with respect to x - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 8

Step 1

Differentiate \(\frac{\text{cos} \, 2x}{\text{√}x}\) with respect to x.

96%

114 rated

Answer

To differentiate (\frac{\text{cos} , 2x}{\text{√}x}), use the quotient rule:

ddx(uv)=uvuvv2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}

where (u = \text{cos} , 2x) and (v = \text{√}x).

  1. Differentiate (u):

    • (u' = -2 \text{sin} , 2x)
  2. Differentiate (v):

    • (v' = \frac{1}{2\sqrt{x}})
  3. Substitute:

    • (d/dx\left(\frac{\text{cos} , 2x}{\sqrt{x}}\right) = \frac{(-2 \text{sin} , 2x)\sqrt{x} - \text{cos} , 2x \frac{1}{2\sqrt{x}}}{x})
  4. Simplify the expression.

Step 2

Show that \(\frac{d}{dx}(\sec^2 \, 3x)\) can be written in the form \(\mu(\tan \, 3x + \tan^3 \, 3x)\).

99%

104 rated

Answer

Using the chain rule:

  1. Differentiate (\sec^2 , 3x):

    • (\frac{d}{dx}(\sec^2 , 3x) = 2 \sec^2(3x) \cdot \sec(3x) \tan(3x) \cdot 3 = 6 \sec^2(3x) \tan(3x))
  2. Notice that:

    • (\sec^2 3x = 1 + \tan^2 3x)
    • Substitute this into the derivative to show:
    • (6(1 + \tan^2 3x) \tan 3x = 6 \tan 3x + 6 \tan^3 3x)
  3. This can be expressed as (\mu(\tan 3x + \tan^3 3x)) with (\mu = 6).

Step 3

Given \(x = 2 \sin(\frac{y}{3})\), find \(\frac{dy}{dx}\) in terms of \(x\).

96%

101 rated

Answer

To find (\frac{dy}{dx}):

  1. Differentiate the equation:

    • (\frac{dx}{dy} = 2 \cdot \frac{1}{3} \cos(\frac{y}{3}))
    • Thus, (\frac{dx}{dy} = \frac{2}{3} \cos(\frac{y}{3}))
  2. Invert to find (\frac{dy}{dx}):

    • (\frac{dy}{dx} = \frac{3}{2 \cos(\frac{y}{3})})
  3. Replace (\cos(\frac{y}{3})) using (x):

    • Solve for (y) in terms of (x): (y = 3\arcsin(\frac{x}{2})) and substitute to get (\frac{dy}{dx}) in terms of (x).

Therefore, the answer will simplify to:

  • (\frac{dy}{dx} = \frac{3}{2\sqrt{1 - (\frac{x}{2})^2/4}}).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;