y = √(5x + 2)
(a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 2
Question 4
y = √(5x + 2)
(a) Complete the table below, giving the values of y to 3 decimal places.
| x | y |
|---|---|
| 0 | |
| 0.5 | |
| 1 | |
| 1.5 | |
| 2 | |
... show full transcript
Worked Solution & Example Answer:y = √(5x + 2)
(a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 2
Step 1
Complete the table: y values
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the values of y for different x values, apply the function ( y = \sqrt{5x + 2} ) for each x:
For ( x = 0 ):
[ y = \sqrt{5(0) + 2} = \sqrt{2} \approx 1.732 ]
For ( x = 0.5 ):
[ y = \sqrt{5(0.5) + 2} = \sqrt{5(0.5) + 2} = \sqrt{2.5 + 2} = \sqrt{4.5} \approx 2.121 ]
For ( x = 1 ):
[ y = \sqrt{5(1) + 2} = \sqrt{5 + 2} = \sqrt{7} \approx 2.646 ]
For ( x = 1.5 ):
[ y = \sqrt{5(1.5) + 2} = \sqrt{7.5 + 2} = \sqrt{9.5} \approx 3.082 ]
For ( x = 2 ):
[ y = \sqrt{5(2) + 2} = \sqrt{10 + 2} = \sqrt{12} \approx 3.464 ]
The completed table is:
x
y
0
1.732
0.5
2.121
1
2.646
1.5
3.082
2
3.464
Step 2
Use the trapezium rule: Approximation
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the approximate integral ( \int_0^2 \sqrt{5x + 2} ,dx ) using the trapezium rule, we use the values from the table:
Trapezium rule formula for n intervals:
[ \text{Area} = \frac{h}{2} [y_0 + 2y_1 + 2y_2 + 2y_3 + y_4] ]