Photo AI

y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 2

Question icon

Question 4

y-=-√(5x-+-2)--(a)-Complete-the-table-below,-giving-the-values-of-y-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 4-2008-Paper 2.png

y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places. | x | y | |---|---| | 0 | | | 0.5 | | | 1 | | | 1.5 | | | 2 | | ... show full transcript

Worked Solution & Example Answer:y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 2

Step 1

Complete the table: y values

96%

114 rated

Answer

To find the values of y for different x values, apply the function ( y = \sqrt{5x + 2} ) for each x:

  1. For ( x = 0 ): [ y = \sqrt{5(0) + 2} = \sqrt{2} \approx 1.732 ]

  2. For ( x = 0.5 ): [ y = \sqrt{5(0.5) + 2} = \sqrt{5(0.5) + 2} = \sqrt{2.5 + 2} = \sqrt{4.5} \approx 2.121 ]

  3. For ( x = 1 ): [ y = \sqrt{5(1) + 2} = \sqrt{5 + 2} = \sqrt{7} \approx 2.646 ]

  4. For ( x = 1.5 ): [ y = \sqrt{5(1.5) + 2} = \sqrt{7.5 + 2} = \sqrt{9.5} \approx 3.082 ]

  5. For ( x = 2 ): [ y = \sqrt{5(2) + 2} = \sqrt{10 + 2} = \sqrt{12} \approx 3.464 ]

The completed table is:

xy
01.732
0.52.121
12.646
1.53.082
23.464

Step 2

Use the trapezium rule: Approximation

99%

104 rated

Answer

To find the approximate integral ( \int_0^2 \sqrt{5x + 2} ,dx ) using the trapezium rule, we use the values from the table:

  1. Trapezium rule formula for n intervals: [ \text{Area} = \frac{h}{2} [y_0 + 2y_1 + 2y_2 + 2y_3 + y_4] ]

where ( h = 0.5 ), ( y_0 = 1.732 ), ( y_1 = 2.121 ), ( y_2 = 2.646 ), ( y_3 = 3.082 ), and ( y_4 = 3.464 ).

  1. Plug the values into the formula: [ \text{Area} = \frac{0.5}{2} [1.732 + 2(2.121) + 2(2.646) + 2(3.082) + 3.464] ] [ = 0.25 [1.732 + 4.242 + 5.292 + 6.164 + 3.464] ] [ = 0.25 [20.894] ] [ = 5.2235 \approx 5.224 ]

Thus, the approximation for the value of ( \int_0^2 \sqrt{5x + 2} ,dx ) is approximately 5.224.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;