Photo AI

Given that $y = 3x^2$, (a) show that $ ext{log}_3 y = 1 + 2 ext{log}_3 x$ (b) Hence, or otherwise, solve the equation $1 + 2 ext{log}_3 x = ext{log}_3 (28x - 9)$ - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 4

Question icon

Question 7

Given-that-$y-=-3x^2$,---(a)-show-that-$-ext{log}_3-y-=-1-+-2--ext{log}_3-x$---(b)-Hence,-or-otherwise,-solve-the-equation---$1-+-2--ext{log}_3-x-=--ext{log}_3-(28x---9)$-Edexcel-A-Level Maths Pure-Question 7-2012-Paper 4.png

Given that $y = 3x^2$, (a) show that $ ext{log}_3 y = 1 + 2 ext{log}_3 x$ (b) Hence, or otherwise, solve the equation $1 + 2 ext{log}_3 x = ext{log}_3 (28x ... show full transcript

Worked Solution & Example Answer:Given that $y = 3x^2$, (a) show that $ ext{log}_3 y = 1 + 2 ext{log}_3 x$ (b) Hence, or otherwise, solve the equation $1 + 2 ext{log}_3 x = ext{log}_3 (28x - 9)$ - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 4

Step 1

show that $ ext{log}_3 y = 1 + 2 ext{log}_3 x$

96%

114 rated

Answer

To show that extlog3y=1+2extlog3x ext{log}_3 y = 1 + 2 ext{log}_3 x, we can start with the given expression for yy.

Substituting for yy, we have: extlog3y=extlog3(3x2) ext{log}_3 y = ext{log}_3 (3x^2) Using the properties of logarithms, this can be split as: extlog3y=extlog33+extlog3(x2) ext{log}_3 y = ext{log}_3 3 + ext{log}_3 (x^2) By applying the power rule of logarithms, we know that: extlog3(x2)=2extlog3x ext{log}_3 (x^2) = 2 ext{log}_3 x Thus, we have: extlog3y=extlog33+2extlog3x ext{log}_3 y = ext{log}_3 3 + 2 ext{log}_3 x Now, since extlog33=1 ext{log}_3 3 = 1, we can substitute this in: extlog3y=1+2extlog3x ext{log}_3 y = 1 + 2 ext{log}_3 x

Step 2

Hence, or otherwise, solve the equation $1 + 2 ext{log}_3 x = ext{log}_3 (28x - 9)$

99%

104 rated

Answer

To solve the equation, start with: 1+2extlog3x=extlog3(28x9)1 + 2 ext{log}_3 x = ext{log}_3 (28x - 9) Substituting extlog33 ext{log}_3 3 into the left side gives: extlog33+2extlog3x=extlog3(28x9) ext{log}_3 3 + 2 ext{log}_3 x = ext{log}_3 (28x - 9) This can be combined as: extlog3(3x2)=extlog3(28x9) ext{log}_3 (3x^2) = ext{log}_3 (28x - 9) Now we remove the logarithms (since the bases are equal) to compare the arguments: 3x2=28x93x^2 = 28x - 9 Rearranging this gives: 3x228x+9=03x^2 - 28x + 9 = 0 Applying the quadratic formula: x=bpmsqrtb24ac2ax = \frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a} Here, a=3a = 3, b=28b = -28, and c=9c = 9: x=28pmsqrt(28)243923x = \frac{28 \\pm \\sqrt{(-28)^2 - 4 * 3 * 9}}{2 * 3} Calculating the discriminant: (28)2439=784108=676(-28)^2 - 4 * 3 * 9 = 784 - 108 = 676, so: x=28pm266x = \frac{28 \\pm 26}{6} Calculating the two potential solutions:

  1. x=546=9x = \frac{54}{6} = 9
  2. x=26=13x = \frac{2}{6} = \frac{1}{3} Thus, the solutions to the equation are: x=9textorx=13x = 9 \\text{ or } \\ x = \frac{1}{3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;