Photo AI

(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find \( \frac{dx}{dy} \) in terms of \( y \) - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 5

Question icon

Question 2

(a)-Given-that-$$\frac{d}{dx}(\cos-x)-=--\sin-x$$-show-that-$$\frac{d}{dx}(\sec-x)-=-\sec-x-\tan-x.$$---Given-that-$$x-=-\sec-2y$$-(b)-find-\(-\frac{dx}{dy}-\)-in-terms-of-\(-y-\)-Edexcel-A-Level Maths Pure-Question 2-2010-Paper 5.png

(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find \( \frac{dx}{dy} \) in te... show full transcript

Worked Solution & Example Answer:(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find \( \frac{dx}{dy} \) in terms of \( y \) - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 5

Step 1

Given that $$\frac{d}{dx}(\cos x) = -\sin x$$, show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$

96%

114 rated

Answer

To find the derivative of ( \sec x ), we start by expressing it in terms of ( \cos x ):

secx=1cosx.\sec x = \frac{1}{\cos x}.

Using the quotient rule for differentiation,

ddx(secx)=ddx(1cosx)=0cosx(sinx)(1)(cosx)2\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \frac{0 \cdot \cos x - (-\sin x)(1)}{(\cos x)^2}

This simplifies to:

sinx(cosx)2=secxtanx.\frac{\sin x}{(\cos x)^2} = \sec x \tan x.

Hence, we have shown that ddx(secx)=secxtanx.\frac{d}{dx}(\sec x) = \sec x \tan x.

Step 2

Find \( \frac{dx}{dy} \) in terms of \( y \).

99%

104 rated

Answer

Given that x=sec2y,x = \sec 2y, we differentiate with respect to ( y ):

dxdy=ddy(sec2y)=2sec2ytan2y.\frac{dx}{dy} = \frac{d}{dy}(\sec 2y) = 2 \sec 2y \tan 2y.

Thus, we have:

dxdy=2sec2ytan2y.\frac{dx}{dy} = 2\sec 2y \tan 2y.

Step 3

Hence find \( \frac{dy}{dx} \) in terms of \( y \).

96%

101 rated

Answer

From the previous step, we have:

dxdy=2sec2ytan2y.\frac{dx}{dy} = 2\sec 2y \tan 2y.

To find ( \frac{dy}{dx} ), we take the reciprocal:

dydx=1dxdy=12sec2ytan2y.\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{2\sec 2y \tan 2y}.

Thus,

dydx=12sec2ytan2y.\frac{dy}{dx} = \frac{1}{2\sec 2y \tan 2y}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;