Photo AI

5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln} 2x$ (b) $y = (x + ext{sin} 2x)^3$ Given that $x = ext{cot} y$, (ii) show that $ rac{dy}{dx} = rac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 27 - 2013 - Paper 1

Question icon

Question 27

5.-(i)-Differentiate-with-respect-to-$x$--(a)-$y-=-x^2--ext{ln}-2x$--(b)-$y-=-(x-+--ext{sin}-2x)^3$--Given-that-$x-=--ext{cot}-y$,---(ii)-show-that-$-rac{dy}{dx}-=--rac{-1}{1+x^2}$-Edexcel-A-Level Maths Pure-Question 27-2013-Paper 1.png

5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln} 2x$ (b) $y = (x + ext{sin} 2x)^3$ Given that $x = ext{cot} y$, (ii) show that $ rac{dy}{dx} = ... show full transcript

Worked Solution & Example Answer:5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln} 2x$ (b) $y = (x + ext{sin} 2x)^3$ Given that $x = ext{cot} y$, (ii) show that $ rac{dy}{dx} = rac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 27 - 2013 - Paper 1

Step 1

(a) Differentiate $y = x^2 ext{ln} 2x$

96%

114 rated

Answer

To differentiate y=x2extln2xy = x^2 ext{ln} 2x, we can use the product rule. Let:

  • u=x2u = x^2 and v=extln2xv = ext{ln} 2x.

Then, applying the product rule:

dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}

First, we differentiate uu:

dudx=2x\frac{du}{dx} = 2x

Next, we differentiate vv using the chain rule:

dvdx=12x2=1x\frac{dv}{dx} = \frac{1}{2x} \cdot 2 = \frac{1}{x}

Thus, substituting into the product rule:

dydx=x21x+ln2x2x\frac{dy}{dx} = x^2 \cdot \frac{1}{x} + \text{ln} 2x \cdot 2x

This simplifies to:

dydx=x+2xln2x\frac{dy}{dx} = x + 2x \text{ln} 2x

Step 2

(b) Differentiate $y = (x + ext{sin} 2x)^3$

99%

104 rated

Answer

To differentiate y=(x+extsin2x)3y = (x + ext{sin} 2x)^3, we will use the chain rule. Let:

  • u=x+extsin2xu = x + ext{sin} 2x.

Then, the derivative becomes:

dydx=3u2dudx\frac{dy}{dx} = 3u^2 \frac{du}{dx}

Now we need to differentiate uu:

dudx=1+2cos2x\frac{du}{dx} = 1 + 2 \text{cos} 2x

Substituting this back into the expression for dydx\frac{dy}{dx}:

dydx=3(x+sin2x)2(1+2cos2x)\frac{dy}{dx} = 3(x + \text{sin} 2x)^2 (1 + 2 \text{cos} 2x)

Step 3

(ii) Given that $x = \text{cot} y$, show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$

96%

101 rated

Answer

Since x=cotyx = \text{cot} y, we can use implicit differentiation with respect to xx:

We know from trigonometric identities:

dydx=1sin2ydydx\frac{dy}{dx} = -\frac{1}{\text{sin}^2 y} \cdot \frac{dy}{dx}

Also, we can express xx in terms of yy:

sin2y+x2=1\text{sin}^2 y + x^2 = 1

Thus:

dydx=csc2y=11+x2\frac{dy}{dx} = -\csc^2 y = -\frac{1}{1+x^2}

Therefore, we have shown that:

dydx=11+x2\frac{dy}{dx} = \frac{-1}{1+x^2}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;