Photo AI

8. (a) Express $2 ext{cos}3x - 3 ext{sin}3x$ in the form $R ext{cos}(3x + u)$, where $R$ and $\nu$ are constants, $R > 0$ and $0 < \nu < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2011 - Paper 4

Question icon

Question 2

8.-(a)-Express-$2-ext{cos}3x---3-ext{sin}3x$-in-the-form-$R-ext{cos}(3x-+--u)$,-where-$R$-and-$\nu$-are-constants,-$R->-0$-and-$0-<-\nu-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 2-2011-Paper 4.png

8. (a) Express $2 ext{cos}3x - 3 ext{sin}3x$ in the form $R ext{cos}(3x + u)$, where $R$ and $\nu$ are constants, $R > 0$ and $0 < \nu < \frac{\pi}{2}$. Give your a... show full transcript

Worked Solution & Example Answer:8. (a) Express $2 ext{cos}3x - 3 ext{sin}3x$ in the form $R ext{cos}(3x + u)$, where $R$ and $\nu$ are constants, $R > 0$ and $0 < \nu < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2011 - Paper 4

Step 1

Express $2\text{cos}3x - 3\text{sin}3x$ in the form $R\text{cos}(3x + \alpha)$

96%

114 rated

Answer

To express 2cos3x3sin3x2\text{cos}3x - 3\text{sin}3x in the form Rcos(3x+α)R\text{cos}(3x + \alpha), we start by defining:

  1. Calculate RR: R2=22+(3)2=4+9=13R^2 = 2^2 + (-3)^2 = 4 + 9 = 13 Thus, R=133.61R = \sqrt{13} \approx 3.61.

  2. Calculate α\alpha using:

    \alpha = \tan^{-1}\left(\frac{-3}{2}\right) \approx -0.983$$ Therefore, we convert $\alpha$ to the positive equivalent in the range $0 < \alpha < \frac{\pi}{2}$ so we get $\alpha \approx 2.158$ radians.

Step 2

Show that $f'(x)$ can be written in the form $f'(x) = R e^{2x} \text{cos}(3x + \alpha)$

99%

104 rated

Answer

To show that f(x)f'(x) can be expressed in the specified form, we derive:

  1. The derivative: f(x)=e2x(3sin3x)+2e2xcos3x=e2x(2cos3x3sin3x)f'(x) = e^{2x}(-3\text{sin}3x) + 2e^{2x}\text{cos}3x = e^{2x}(2\text{cos}3x - 3\text{sin}3x)
  2. Substitute the expression from part (a): f(x)=e2x(Rcos(3x+α))f'(x) = e^{2x}(R\text{cos}(3x + \alpha)) Thus: f(x)=Re2xcos(3x+α)f'(x) = Re^{2x}\text{cos}(3x + \alpha)

Step 3

Find the smallest positive value of $x$ for which the curve has a turning point

96%

101 rated

Answer

To find the turning points, set f(x)=0f'(x) = 0:

  1. From part (b): Rcos(3x+α)=0R\text{cos}(3x + \alpha) = 0
  2. Solve for 3x+α=π23x + \alpha = \frac{\pi}{2}, which gives: 3x=π2α3x = \frac{\pi}{2} - \alpha
  3. Substitute α2.158\alpha \approx 2.158: 3x=π22.1581.4133x = \frac{\pi}{2} - 2.158 \approx 1.413
  4. Therefore, solving for xx yields: x=1.41330.196x = \frac{1.413}{3} \approx 0.196 Hence the smallest positive value of xx is approximately 0.200.20.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;