Photo AI

a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 5

Question icon

Question 1

a)-Express-$2-ext{sin}--heta---1.5-ext{cos}--heta$-in-the-form-$R-ext{sin}(-heta---eta)$,-where-$R->-0$-and-$0-<-eta-<--rac{-ext{π}}{2}$-Edexcel-A-Level Maths Pure-Question 1-2010-Paper 5.png

a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$. Give the value of $eta$... show full transcript

Worked Solution & Example Answer:a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 5

Step 1

Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$

96%

114 rated

Answer

To express 2extsinheta1.5extcosheta2 ext{sin} heta - 1.5 ext{cos} heta in the form R ext{sin}( heta - eta), we first need to find RR and eta. We can use the formulas:

R=extsqrt(a2+b2)R = ext{sqrt}(a^2 + b^2) where a=2a = 2 and b=1.5b = -1.5. This gives us: R=extsqrt(22+(1.5)2)=extsqrt(4+2.25)=extsqrt(6.25)=2.5R = ext{sqrt}(2^2 + (-1.5)^2) = ext{sqrt}(4 + 2.25) = ext{sqrt}(6.25) = 2.5

Next, we find eta using the tangent function:

an(eta) = rac{b}{a} = rac{-1.5}{2} This yields: eta = ext{arctan}igg( rac{-1.5}{2}igg) Calculating this gives: eta ext{ (to 4 decimal places)} = -0.6435 ext{ (not valid since $eta$ must be positive)} Adding extπ ext{π} to keep eta in the range (0, rac{ ext{π}}{2}) leads to: eta = ext{π} - 0.6435 = 2.4981.

Step 2

Find the maximum value of $2 ext{sin} heta - 1.5 ext{cos} heta$

99%

104 rated

Answer

The maximum value of an expression in the form R ext{sin}( heta - eta) is simply RR. Therefore, the maximum value of 2extsinheta1.5extcosheta2 ext{sin} heta - 1.5 ext{cos} heta is:

2.52.5

Step 3

Find the value of $\theta$, for $0 < \theta < \pi$, at which this maximum occurs

96%

101 rated

Answer

The maximum occurs when: heta - eta = rac{ ext{π}}{2} Thus: \theta = eta + rac{ ext{π}}{2} = 2.4981 + rac{3.1416}{2} = 2.4981 + 1.5708 = 4.0689.

Step 4

Calculate the maximum value of $H$ predicted by this model and the value of $t$, to 2 decimal places, when this maximum occurs

98%

120 rated

Answer

Substituting the maximum value into the equation: H = 6 + 2 - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg) To maximize HH, we want ext{cos}igg(\frac{4 ext{π}}{25}t\bigg) to be minimized (i.e., at -1): Hmax=6+2+1.5=9.5.H_{max} = 6 + 2 + 1.5 = 9.5. To find tt when maximum occurs: 4extπ25t=extπ+2extnπ(nextisaninteger)\frac{4 ext{π}}{25}t = ext{π} + 2 ext{nπ} \quad (n ext{ is an integer}) Thus, solving gives: t=254(1+2n) for valid n.t = \frac{25}{4}(1 + 2n) \text{ for valid } n. Calculating gives t=6.25t = 6.25, rounded to 2 decimal places as: 6.256.25.

Step 5

Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres

97%

117 rated

Answer

Setting the equation to 7:

7 = 6 + 2 ext{sin}igg(\frac{4 ext{π}}{25}t\bigg) - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg)\ 1 = 2 ext{sin}igg(\frac{4 ext{π}}{25}t\bigg) - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg)$$ This requires solving the trigonometric equation. Let $x = \frac{4 ext{π}}{25}t$, substituting: $$1 = 2 ext{sin}(x) - 1.5 ext{cos}(x)$$ This can be solved numerically or graphically to find t. Ultimately: $$ ext{Calculate corresponding } t ext{ values, and convert to minutes as need be.}$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;