a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 5
Question 1
a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$.
Give the value of $eta$... show full transcript
Worked Solution & Example Answer:a) Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$, where $R > 0$ and $0 < eta < rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 5
Step 1
Express $2 ext{sin} heta - 1.5 ext{cos} heta$ in the form $R ext{sin}( heta - eta)$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To express 2extsinheta−1.5extcosheta in the form R ext{sin}( heta - eta), we first need to find R and eta.
We can use the formulas:
R=extsqrt(a2+b2)
where a=2 and b=−1.5. This gives us:
R=extsqrt(22+(−1.5)2)=extsqrt(4+2.25)=extsqrt(6.25)=2.5
Next, we find eta using the tangent function:
an(eta) = rac{b}{a} = rac{-1.5}{2}
This yields:
eta = ext{arctan}igg(rac{-1.5}{2}igg)
Calculating this gives:
eta ext{ (to 4 decimal places)} = -0.6435 ext{ (not valid since $eta$ must be positive)}
Adding extπ to keep eta in the range (0, rac{ ext{π}}{2}) leads to:
eta = ext{π} - 0.6435 = 2.4981.
Step 2
Find the maximum value of $2 ext{sin} heta - 1.5 ext{cos} heta$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The maximum value of an expression in the form R ext{sin}( heta - eta) is simply R. Therefore, the maximum value of 2extsinheta−1.5extcosheta is:
2.5
Step 3
Find the value of $\theta$, for $0 < \theta < \pi$, at which this maximum occurs
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The maximum occurs when:
heta - eta = rac{ ext{π}}{2}
Thus:
\theta = eta + rac{ ext{π}}{2} = 2.4981 + rac{3.1416}{2} = 2.4981 + 1.5708 = 4.0689.
Step 4
Calculate the maximum value of $H$ predicted by this model and the value of $t$, to 2 decimal places, when this maximum occurs
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Substituting the maximum value into the equation:
H = 6 + 2 - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg)
To maximize H, we want ext{cos}igg(\frac{4 ext{π}}{25}t\bigg) to be minimized (i.e., at -1):
Hmax=6+2+1.5=9.5.
To find t when maximum occurs:
254extπt=extπ+2extnπ(nextisaninteger)
Thus, solving gives:
t=425(1+2n) for valid n.
Calculating gives t=6.25, rounded to 2 decimal places as:
6.25.
Step 5
Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Setting the equation to 7:
7 = 6 + 2 ext{sin}igg(\frac{4 ext{π}}{25}t\bigg) - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg)\
1 = 2 ext{sin}igg(\frac{4 ext{π}}{25}t\bigg) - 1.5 ext{cos}igg(\frac{4 ext{π}}{25}t\bigg)$$
This requires solving the trigonometric equation.
Let $x = \frac{4 ext{π}}{25}t$, substituting:
$$1 = 2 ext{sin}(x) - 1.5 ext{cos}(x)$$
This can be solved numerically or graphically to find t. Ultimately:
$$ ext{Calculate corresponding } t ext{ values, and convert to minutes as need be.}$$