Photo AI

(i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 3

Question icon

Question 6

(i)-Express--\(-(5---\sqrt{8})(1-+-\sqrt{2})-\)-in-the-form-\(-a-+-b\sqrt{2}-\),-where-\(-a-\)-and-\(-b-\)-are-integers-Edexcel-A-Level Maths Pure-Question 6-2013-Paper 3.png

(i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers. (ii) Express \( \sqrt{80} + \frac{30}{\sqrt... show full transcript

Worked Solution & Example Answer:(i) Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \), where \( a \) and \( b \) are integers - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 3

Step 1

Express \( (5 - \sqrt{8})(1 + \sqrt{2}) \) in the form \( a + b\sqrt{2} \)

96%

114 rated

Answer

To solve ( (5 - \sqrt{8})(1 + \sqrt{2}) ), we first expand the expression:

[ (5 - \sqrt{8})(1 + \sqrt{2}) = 5 \cdot 1 + 5 \cdot \sqrt{2} - \sqrt{8} \cdot 1 - \sqrt{8} \cdot \sqrt{2} ]

This simplifies to:

[ 5 + 5\sqrt{2} - \sqrt{8} - \sqrt{8 \cdot 2} ]

Now substituting ( \sqrt{8} = 2\sqrt{2} ):

[ 5 + 5\sqrt{2} - 2\sqrt{2} - \sqrt{16} = 5 + (5 - 2)\sqrt{2} - 4 ]

Combining like terms:

[ (5 - 4) + 3\sqrt{2} = 1 + 3\sqrt{2} ]

Thus, ( a = 1 ) and ( b = 3 ).

Step 2

Express \( \sqrt{80} + \frac{30}{\sqrt{5}} \) in the form \( c\sqrt{5} \)

99%

104 rated

Answer

To express ( \sqrt{80} + \frac{30}{\sqrt{5}} ):

First, simplify ( \sqrt{80} ):

[ \sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5} ]

Now, for the term ( \frac{30}{\sqrt{5}} ), we can rationalize the denominator:

[ \frac{30}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{30\sqrt{5}}{5} = 6\sqrt{5} ]

Adding these two terms together gives:

[ 4\sqrt{5} + 6\sqrt{5} = (4 + 6)\sqrt{5} = 10\sqrt{5} ]

Thus, ( c = 10 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;