Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 \tan t, \quad y = 5\sqrt{3}\sin 2t, \quad 0 \leq t \leq \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2016 - Paper 4

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4-\tan-t,-\quad-y-=-5\sqrt{3}\sin-2t,-\quad-0-\leq-t-\leq-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 6-2016-Paper 4.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 \tan t, \quad y = 5\sqrt{3}\sin 2t, \quad 0 \leq t \leq \frac{\pi}{2}$. The point P lies on... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 4 \tan t, \quad y = 5\sqrt{3}\sin 2t, \quad 0 \leq t \leq \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2016 - Paper 4

Step 1

(a) Find the exact value of $\frac{dy}{dx}$ at the point P.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we use the chain rule for parametric equations:

dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

First, we compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}.

  1. The derivative of xx: x=4tant    dxdt=4sec2tx = 4 \tan t \implies \frac{dx}{dt} = 4 \sec^2 t

  2. The derivative of yy: y=53sin2t    dydt=103cos2ty = 5\sqrt{3}\sin 2t \implies \frac{dy}{dt} = 10\sqrt{3}\cos 2t

Now substituting for t=π3t = \frac{\pi}{3} (since PP corresponds to this value):

  • For dxdt\frac{dx}{dt}: dxdtt=π3=4sec2(π3)=44=16\frac{dx}{dt} \bigg|_{t = \frac{\pi}{3}} = 4 \sec^2\left(\frac{\pi}{3}\right) = 4 \cdot 4 = 16

  • For dydt\frac{dy}{dt}: dydtt=π3=103cos(2π3)=103(12)=53\frac{dy}{dt} \bigg|_{t = \frac{\pi}{3}} = 10\sqrt{3}\cos\left(2 \cdot \frac{\pi}{3}\right) = 10\sqrt{3} \cdot (-\frac{1}{2}) = -5\sqrt{3}

Putting it together:

dydx=5316\frac{dy}{dx} = \frac{-5\sqrt{3}}{16}

Thus, the exact value of dydx\frac{dy}{dx} at the point P is 5316\frac{-5\sqrt{3}}{16}.

Step 2

(b) Find the exact coordinates of the point Q.

99%

104 rated

Answer

To find the point Q where dydx=0\frac{dy}{dx}=0, we set dydt=0\frac{dy}{dt} = 0:

From earlier, dydt=103cos2t\frac{dy}{dt} = 10\sqrt{3}\cos 2t. Setting this equal to zero gives:

103cos2t=0    cos2t=010\sqrt{3}\cos 2t = 0 \implies \cos 2t = 0

This results in:

2t=π2+nπ    t=π4+nπ22t = \frac{\pi}{2} + n\pi \implies t = \frac{\pi}{4} + \frac{n\pi}{2}

For 0tπ20 \leq t \leq \frac{\pi}{2}, the feasible solution is:

t=π4t = \frac{\pi}{4}

Now substituting t=π4t = \frac{\pi}{4} back into the parametric equations:

  1. For xx: x=4tan(π4)=4x = 4 \tan\left(\frac{\pi}{4}\right) = 4

  2. For yy: y=53sin(2π4)=531=53y = 5\sqrt{3}\sin\left(2 \cdot \frac{\pi}{4}\right) = 5\sqrt{3} \cdot 1 = 5\sqrt{3}

Thus, the exact coordinates of the point Q are (4,53)(4, 5\sqrt{3}).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;