Substituting for y gives us:
(−4x−1)2+5x2+2x=0
Expanding the left side:
16x2+8x+1+5x2+2x=0
Combine like terms:
21x2+10x+1=0
This is now a quadratic equation in the form of ax2+bx+c=0. We can use the quadratic formula:
x=2a−b±b2−4ac
Substituting a = 21, b = 10, and c = 1:
x=2⋅21−10±102−4⋅21⋅1=42−10±100−84=42−10±16
This simplifies to:
x=42−10±4
Thus, we find the two values for x:
- When we add:
x=42−6=−71
- When we subtract:
x=42−14=−31