Photo AI

Solve the simultaneous equations y + 4x + 1 = 0 y^2 + 5x^2 + 2x = 0 - Edexcel - A-Level Maths Pure - Question 7 - 2016 - Paper 1

Question icon

Question 7

Solve-the-simultaneous-equations--y-+-4x-+-1-=-0--y^2-+-5x^2-+-2x-=-0-Edexcel-A-Level Maths Pure-Question 7-2016-Paper 1.png

Solve the simultaneous equations y + 4x + 1 = 0 y^2 + 5x^2 + 2x = 0

Worked Solution & Example Answer:Solve the simultaneous equations y + 4x + 1 = 0 y^2 + 5x^2 + 2x = 0 - Edexcel - A-Level Maths Pure - Question 7 - 2016 - Paper 1

Step 1

y + 4x + 1 = 0

96%

114 rated

Answer

To express y in terms of x, rearrange the first equation:

y=4x1y = -4x - 1

We will substitute this expression into the second equation.

Step 2

y^2 + 5x^2 + 2x = 0

99%

104 rated

Answer

Substituting for y gives us:

(4x1)2+5x2+2x=0(-4x - 1)^2 + 5x^2 + 2x = 0

Expanding the left side:

16x2+8x+1+5x2+2x=016x^2 + 8x + 1 + 5x^2 + 2x = 0

Combine like terms:

21x2+10x+1=021x^2 + 10x + 1 = 0

This is now a quadratic equation in the form of ax2+bx+c=0ax^2 + bx + c = 0. We can use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting a = 21, b = 10, and c = 1:

x=10±1024211221=10±1008442=10±1642x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 21 \cdot 1}}{2 \cdot 21} = \frac{-10 \pm \sqrt{100 - 84}}{42} = \frac{-10 \pm \sqrt{16}}{42}

This simplifies to:

x=10±442x = \frac{-10 \pm 4}{42}

Thus, we find the two values for x:

  1. When we add:

x=642=17x = \frac{-6}{42} = -\frac{1}{7}

  1. When we subtract:

x=1442=13x = \frac{-14}{42} = -\frac{1}{3}

Step 3

Finding y values

96%

101 rated

Answer

Now substituting these x values back into the equation for y:

  1. For x=17x = -\frac{1}{7}:

y=4(17)1=471=4777=37y = -4(-\frac{1}{7}) - 1 = \frac{4}{7} - 1 = \frac{4}{7} - \frac{7}{7} = -\frac{3}{7}

  1. For x=13x = -\frac{1}{3}:

y=4(13)1=431=4333=13y = -4(-\frac{1}{3}) - 1 = \frac{4}{3} - 1 = \frac{4}{3} - \frac{3}{3} = \frac{1}{3}

Thus, the final pairs of solutions are:

  • For x=17x = -\frac{1}{7}, y=37y = -\frac{3}{7}
  • For x=13x = -\frac{1}{3}, y=13y = \frac{1}{3}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;