Photo AI

Given that y = 3x^2 + 6x^{ rac{1}{3}} + rac{2x^3 - 7}{3 ext{√}x}, x > 0 find \frac{dy}{dx} - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 1

Question icon

Question 8

Given-that--y-=-3x^2-+-6x^{-rac{1}{3}}-+--rac{2x^3---7}{3-ext{√}x},--x->-0--find-\frac{dy}{dx}-Edexcel-A-Level Maths Pure-Question 8-2016-Paper 1.png

Given that y = 3x^2 + 6x^{ rac{1}{3}} + rac{2x^3 - 7}{3 ext{√}x}, x > 0 find \frac{dy}{dx}. Give each term in your answer in its simplified form.

Worked Solution & Example Answer:Given that y = 3x^2 + 6x^{ rac{1}{3}} + rac{2x^3 - 7}{3 ext{√}x}, x > 0 find \frac{dy}{dx} - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 1

Step 1

Differentiate each term

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we will differentiate each term in the expression for ( y ):

  1. For the term ( 3x^2 ), the derivative is: ddx(3x2)=6x\frac{d}{dx}(3x^2) = 6x

  2. For the term ( 6x^{\frac{1}{3}} ), we apply the power rule: ddx(6x13)=613x23=2x23\frac{d}{dx}(6x^{\frac{1}{3}}) = 6 \cdot \frac{1}{3} x^{-\frac{2}{3}} = 2x^{-\frac{2}{3}}

  3. For the term ( \frac{2x^3 - 7}{3\text{√}x} ), we will use the Quotient Rule. Let ( u = 2x^3 - 7 ) and ( v = 3x^{\frac{1}{2}} ):

    • First, find ( \frac{du}{dx} = 6x^2 )
    • Next, find ( \frac{dv}{dx} = \frac{3}{2} x^{-\frac{1}{2}} )
    • Apply the Quotient Rule: dydx=vdudxudvdxv2=3x12(6x2)(2x37)(32x12)(3x12)2\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \frac{3x^{\frac{1}{2}} (6x^2) - (2x^3 - 7)(\frac{3}{2} x^{-\frac{1}{2}})}{(3x^{\frac{1}{2}})^2}

Step 2

Combine and simplify

99%

104 rated

Answer

Now, combine the derivatives: dydx=6x+2x23+3(6x52)3(2x37)2x129x\frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \frac{3(6x^{\frac{5}{2}}) - \frac{3(2x^3 - 7)}{2} \cdot x^{-\frac{1}{2}}}{9x}

Finally, simplifying this will yield: ( \frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \text{(combine like terms)} )

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;