Photo AI
Question 5
3. (a) Find \( \int x \cos 2x \, dx \). (b) Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^2 x \, dx \).
Step 1
Answer
To solve ( \int x \cos 2x , dx ), we will use the method of integration by parts. Let:
This gives us:
Applying integration by parts, we have:
Thus,
Now, we will evaluate the remaining integral:
So, substituting back, we get:
Step 2
Answer
Using the identity ( \cos 2x = 2 \cos^2 x - 1 ), we can express ( \int x \cos^2 x , dx ) in terms of our previous result.
First, rewrite the integral as:
We know from part (a):
Now, substituting this back, we find:
Thus,
Report Improved Results
Recommend to friends
Students Supported
Questions answered