We first evaluate the integral:
A=∫−14(4+3x−x2)dx
Calculating each term separately:
A=[4x+23x2−31x3]−14
Now we substitute the limits:
A=[4(4)+23(42)−31(43)]−[4(−1)+23(−1)2−31(−1)3]
Calculating:
A=[16+23(16)−364]−[−4+23−31]
Which simplifies to:
A=[16+24−364]−[−4+1.5+31]