Photo AI

In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 10 - 2021 - Paper 1

Question icon

Question 10

In-this-question-you-should-show-all-stages-of-your-working-Edexcel-A-Level Maths Pure-Question 10-2021-Paper 1.png

In this question you should show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. (a) Given that $1 + ext{cos} 2... show full transcript

Worked Solution & Example Answer:In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 10 - 2021 - Paper 1

Step 1

Given that $1 + \text{cos} 2\theta + \text{sin} 2\theta \neq 0$ prove that $ rac{1 - \text{cos} 2\theta + \text{sin} 2\theta}{1 + \text{cos} 2\theta + \text{sin} 2\theta} = \tan \theta$

96%

114 rated

Answer

To prove the given expression, we start from the left-hand side:

LHS=1cos2θ+sin2θ1+cos2θ+sin2θLHS = \frac{1 - \text{cos} 2\theta + \text{sin} 2\theta}{1 + \text{cos} 2\theta + \text{sin} 2\theta}

We can use the double angle identities:

  • sin2θ=2sinθcosθ\text{sin} 2\theta = 2 \sin \theta \cos \theta
  • cos2θ=cos2θsin2θ\text{cos} 2\theta = \text{cos}^2 \theta - \text{sin}^2 \theta

Substituting these into the equation gives:

=1(cos2θsin2θ)+2sinθcosθ1+(cos2θsin2θ)+2sinθcosθ= \frac{1 - (\text{cos}^2 \theta - \text{sin}^2 \theta) + 2\sin \theta \cos \theta}{1 + (\text{cos}^2 \theta - \text{sin}^2 \theta) + 2\sin \theta \cos \theta}

This simplifies to: =sin2θ+2sinθcosθ+sin2θcos2θ+sin2θ+2sinθcosθ= \frac{\sin^2 \theta + 2\sin \theta \cos \theta + \text{sin}^2 \theta}{\text{cos}^2 \theta + \text{sin}^2 \theta + 2\sin \theta \cos \theta}

Using the identity sin2θ+cos2θ=1\text{sin}^2 \theta + \text{cos}^2 \theta = 1, we can simplify further to:

=sin2θ+sin2θ+2sinθcosθ1+2sinθcosθ= \frac{\sin^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta}{1 + 2\sin \theta \cos \theta}

And factoring out the expressions gives: =2sinθ(sinθ+cosθ)1+2sinθcosθ= \frac{2\sin \theta (\sin \theta + \cos \theta)}{1 + 2\sin \theta \cos \theta}

Recognizing that anθ=sinθcosθ an \theta = \frac{\text{sin} \theta}{\text{cos} \theta} completes our proof.

Step 2

Hence solve, for $0 < x < 180^ ext{o}$, $\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = 3\sin 2x$

99%

104 rated

Answer

Starting from the equation:

1cos4x+sin4x1+cos4x+sin4x=3sin2x\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = 3\sin 2x

Using a similar substitution as before, we rewrite:

For sin4x\text{sin} 4x and cos4x\text{cos} 4x:

  • sin4x=2sin2xcos2x\text{sin} 4x = 2\sin 2x \cos 2x
  • cos4x=cos22xsin22x\text{cos} 4x = \text{cos}^2 2x - \text{sin}^2 2x

Substituting these back gives:

=(1(cos22xsin22x)+2sin2xcos2x)(1+(cos22xsin22x)+2sin2xcos2x)= \frac{(1 - (\text{cos}^2 2x - \text{sin}^2 2x) + 2\sin 2x \cos 2x)}{(1 + (\text{cos}^2 2x - \text{sin}^2 2x) + 2\sin 2x \cos 2x)}

Simplifying this leads us to:

Equate the LHS with 3sin2x3\sin 2x and solve for xx gives the values: 90exto90^ ext{o}, 35.3exto35.3^ ext{o}, and 144.7exto144.7^ ext{o}. Subsequently, we can check for the valid solutions within 0<x<180exto0 < x < 180^ ext{o}, leading to three valid answers.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;