Photo AI

f(x) = x³ + 3x² + 5 - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 2

Question icon

Question 5

f(x)-=-x³-+-3x²-+-5-Edexcel-A-Level Maths Pure-Question 5-2007-Paper 2.png

f(x) = x³ + 3x² + 5. Find (a) f''(x), (b) \int_{1}^{2} f(x) \, dx.

Worked Solution & Example Answer:f(x) = x³ + 3x² + 5 - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 2

Step 1

(a) f''(x)

96%

114 rated

Answer

To find the second derivative of the function, we first need to differentiate it twice.

  1. First Derivative f(x)f'(x):

    f(x)=ddx(x3+3x2+5)=3x2+6xf'(x) = \frac{d}{dx}(x^3 + 3x^2 + 5) = 3x^2 + 6x

  2. Second Derivative f(x)f''(x):

    f(x)=ddx(3x2+6x)=6x+6f''(x) = \frac{d}{dx}(3x^2 + 6x) = 6x + 6

Thus, the second derivative is:

f(x)=6x+6f''(x) = 6x + 6

Step 2

(b) \int_{1}^{2} f(x) \, dx

99%

104 rated

Answer

To calculate the definite integral of f(x)f(x) from 1 to 2, we perform the following steps:

  1. Set up the integral:

    12f(x)dx=12(x3+3x2+5)dx\int_{1}^{2} f(x) \, dx = \int_{1}^{2} (x^3 + 3x^2 + 5) \, dx

  2. Integrate the function:

    (x3+3x2+5)dx=x44+x3+5x+C\int (x^3 + 3x^2 + 5) \, dx = \frac{x^4}{4} + x^3 + 5x + C

  3. Evaluate the definite integral from 1 to 2:

    [x44+x3+5x]12\left[\frac{x^4}{4} + x^3 + 5x\right]_{1}^{2}

    • Calculate at x=2x = 2:

    244+23+5(2)=164+8+10=4+8+10=22\frac{2^4}{4} + 2^3 + 5(2) = \frac{16}{4} + 8 + 10 = 4 + 8 + 10 = 22

    • Calculate at x=1x = 1:

    144+13+5(1)=14+1+5=14+1+5=14+44+204=254\frac{1^4}{4} + 1^3 + 5(1) = \frac{1}{4} + 1 + 5 = \frac{1}{4} + 1 + 5 = \frac{1}{4} + \frac{4}{4} + \frac{20}{4} = \frac{25}{4}

  4. Final result:

    12f(x)dx=22254=884254=634\int_{1}^{2} f(x) \, dx = 22 - \frac{25}{4} = \frac{88}{4} - \frac{25}{4} = \frac{63}{4}

Thus, the final result is:

12f(x)dx=634\int_{1}^{2} f(x) \, dx = \frac{63}{4}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;