Photo AI

8. (a) Prove that $$2 \cot 2x + \tan x \equiv \cot x \\ x + \frac{n \pi}{2}, n \in \mathbb{Z}$$ (4) (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$$ $$6 \cot 2x + 3 \tan x = \csc^2 x - 2$$ Give your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 3

Question icon

Question 1

8.-(a)-Prove-that----$$2-\cot-2x-+-\tan-x-\equiv-\cot-x-\\-x-+-\frac{n-\pi}{2},-n-\in-\mathbb{Z}$$----(4)--(b)-Hence,-or-otherwise,-solve,-for-----$$-\pi-<-x-<-\pi,$$-----$$6-\cot-2x-+-3-\tan-x-=-\csc^2-x---2$$----Give-your-answers-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 1-2016-Paper 3.png

8. (a) Prove that $$2 \cot 2x + \tan x \equiv \cot x \\ x + \frac{n \pi}{2}, n \in \mathbb{Z}$$ (4) (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$... show full transcript

Worked Solution & Example Answer:8. (a) Prove that $$2 \cot 2x + \tan x \equiv \cot x \\ x + \frac{n \pi}{2}, n \in \mathbb{Z}$$ (4) (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$$ $$6 \cot 2x + 3 \tan x = \csc^2 x - 2$$ Give your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 3

Step 1

Prove that $2 \cot 2x + \tan x \equiv \cot x$

96%

114 rated

Answer

To prove the identity, we start from the left-hand side (LHS):

  1. Recall the double angle identity:
    cot2x=1tan2x2tanx\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}

  2. Substitute this identity into the expression: LHS=21tan2x2tanx+tanxLHS = 2 \cdot \frac{1 - \tan^2 x}{2 \tan x} + \tan x

  3. Simplifying yields:
    LHS=1tan2xtanx+tanx=1tan2x+tan2xtanx=1tanx=cotxLHS = \frac{1 - \tan^2 x}{\tan x} + \tan x = \frac{1 - \tan^2 x + \tan^2 x}{\tan x} = \frac{1}{\tan x} = \cot x

Thus, we have shown that LHS = RHS, proving the identity.

Step 2

Hence, or otherwise, solve, for $-\pi < x < \pi$, $6 \cot 2x + 3 \tan x = \csc^2 x - 2$

99%

104 rated

Answer

  1. Start by rewriting the equation:
    6cot2x+3tanx=csc2x26 \cot 2x + 3 \tan x = \csc^2 x - 2

  2. Utilize the identity csc2x=1+cot2x\csc^2 x = 1 + \cot^2 x, so the equation becomes:
    6cot2x+3tanx=1+cot2x26 \cot 2x + 3 \tan x = 1 + \cot^2 x - 2

  3. Rearranging gives:
    cot2x+6cot2x+3tanx+1=0\cot^2 x + 6 \cot 2x + 3 \tan x + 1 = 0

  4. Consider cot2x=cos2xsin2x\cot 2x = \frac{\cos 2x}{\sin 2x} and substitute back, applying the double angle formulas.
    Simplify and rearrange terms to form a quadratic in terms of tanx\tan x:
    tan2x=33\tan^2 x = \frac{3}{\sqrt{3}}

  5. Solving gives:
    tanx=34=32\tan x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}

Calculate the angles within the interval:

  • For x0.294x \approx 0.294 (1st quadrant)
  • For x2.848x \approx -2.848 (3rd quadrant)
  • For x1.865x \approx -1.865 (2nd quadrant)

Finally, the answers in three decimal places are:
x0.294,2.848,1.865x \approx 0.294, -2.848, -1.865

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;