Photo AI

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4

Question icon

Question 2

9.-(a)-Prove-that--sin-2x---tan-x-=-tan-x-cos-2x,--x-≠-(2n-+-1)90°,-n-∈-Z--(4)--(b)-Given-that-x-≠-90°-and-x-≠-270°,-solve,-for-0-≤-x-<-360°,--sin-2x---tan-x-=-3-tan-x-sin-x-Edexcel-A-Level Maths Pure-Question 2-2017-Paper 4.png

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan... show full transcript

Worked Solution & Example Answer:9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (4) (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4

Step 1

Prove that sin 2x - tan x = tan x cos 2x

96%

114 rated

Answer

To prove the identity, we start with the left side:

  1. Use the double angle identity for sin: sin2x=2sinxcosxsin 2x = 2 sin x cos x Therefore, 2sinxcosxtanx2 sin x cos x - tan x.

  2. Substitute tan x with (\frac{sin x}{cos x}): 2sinxcosxsinxcosx2 sin x cos x - \frac{sin x}{cos x}.

  3. To combine the terms, find a common denominator (cos x): 2sinxcos2xsinxcosx\frac{2 sin x cos^2 x - sin x}{cos x}.

  4. Factor out sin x: sinx(2cos2x1)sin x \left(2 cos^2 x - 1\right).

  5. Use the identity (cos 2x = 2 cos^2 x - 1): Hence, we can rewrite it as: sinxcos2xsin x \cdot cos 2x.

  6. So, we have: sin2xtanx=tanxcos2xsin 2x - tan x = tan x cos 2x.

This proves the equation.

Step 2

Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x

99%

104 rated

Answer

Starting with the equation:

  1. We rewrite the left side: sin2xtanx=3tanxsinxsin 2x - tan x = 3 tan x sin x.

  2. Substitute tan x using (\frac{sin x}{cos x}): sin2xsinxcosx=3sinxcosxsinxsin 2x - \frac{sin x}{cos x} = 3 \cdot \frac{sin x}{cos x} \cdot sin x.

  3. Rearranging gives: sin2x=4sin2xcosxsin 2x = 4 \frac{sin^2 x}{cos x}.

  4. Using the identity for sin 2x again: 2sinxcosx=4sin2xcosx2 sin x cos x = 4 \frac{sin^2 x}{cos x}.

  5. Cross-multiplying leads to: 2sinxcos2x=4sin2x2 sin x cos^2 x = 4 sin^2 x.

  6. Rearranging yields: 2cos2x=4sinx2 cos^2 x = 4 sin x.

  7. Then divide by 2: cos2x=2sinxcos^2 x = 2 sin x.

  8. Finally, express in terms of sin: cos2x=2(1cos2x)cos^2 x = 2(1 - cos^2 x).

  9. Rearranging gives: 3cos2x+2=03 cos^2 x + 2 = 0: This implies: (x = 16.3°, 163.7°, 180°).

Thus, the final solutions are: x=16.3°,163.7°,180°x = 16.3°, 163.7°, 180°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;