Photo AI

A river, running between parallel banks, is 20 m wide - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 2

Question icon

Question 7

A-river,-running-between-parallel-banks,-is-20-m-wide-Edexcel-A-Level Maths Pure-Question 7-2005-Paper 2.png

A river, running between parallel banks, is 20 m wide. The depth, y meters, of the river measured at a point x meters from one bank is given by the formula $$y = \f... show full transcript

Worked Solution & Example Answer:A river, running between parallel banks, is 20 m wide - Edexcel - A-Level Maths Pure - Question 7 - 2005 - Paper 2

Step 1

Complete the table below, giving values of y to 3 decimal places.

96%

114 rated

Answer

To find the values of y for each given value of x, we can substitute x into the given formula:

For x = 0: y=110200=110200.447.y = \frac{1}{10} \sqrt{20 - 0} = \frac{1}{10} \sqrt{20} \approx 0.447.

For x = 4: y=110204=11016=110×4=0.400.y = \frac{1}{10} \sqrt{20 - 4} = \frac{1}{10} \sqrt{16} = \frac{1}{10} \times 4 = 0.400.

For x = 8: y=110208=110120.346.y = \frac{1}{10} \sqrt{20 - 8} = \frac{1}{10} \sqrt{12} \approx 0.346.

For x = 12: y=1102012=11080.283.y = \frac{1}{10} \sqrt{20 - 12} = \frac{1}{10} \sqrt{8} \approx 0.283.

For x = 16: y=1102016=1104=110×2=0.200.y = \frac{1}{10} \sqrt{20 - 16} = \frac{1}{10} \sqrt{4} = \frac{1}{10} \times 2 = 0.200.

For x = 20: y=1102020=0.y = \frac{1}{10} \sqrt{20 - 20} = 0.

Thus, the completed table is:

x048121620
y0.4470.4000.3460.2830.2000

Step 2

Use the trapezium rule with all the values in the table to estimate the cross-sectional area of the river.

99%

104 rated

Answer

Using the trapezium rule, we estimate the area A under the curve:

A=h2(y0+2y1+2y2+2y3+2y4+y5)A = \frac{h}{2} \left( y_0 + 2y_1 + 2y_2 + 2y_3 + 2y_4 + y_5 \right)

where h = 4 (the distance between x values), and the y values calculated above:

  • y0=0.447y_0 = 0.447
  • y1=0.400y_1 = 0.400
  • y2=0.346y_2 = 0.346
  • y3=0.283y_3 = 0.283
  • y4=0.200y_4 = 0.200
  • y5=0y_5 = 0

Substituting:

A=42(0.447+2(0.400)+2(0.346)+2(0.283)+2(0.200)+0)A = \frac{4}{2} \left( 0.447 + 2(0.400) + 2(0.346) + 2(0.283) + 2(0.200) + 0 \right)

Calculating this gives:

A=2(0.447+0.800+0.692+0.566+0.400+0)=2×3.905=7.81 m2.A = 2 \left( 0.447 + 0.800 + 0.692 + 0.566 + 0.400 + 0 \right) = 2 \times 3.905 = 7.81 \text{ m}^2.

Step 3

estimate, in m³, the volume of water flowing per minute, giving your answer to 3 significant figures.

96%

101 rated

Answer

The volume of water flowing per minute can be calculated using the formula:

V=A×extvelocityV = A \times ext{velocity}

where

  • A=7.81 m2A = 7.81 \text{ m}^2 (cross-sectional area), and
  • velocity = 2 m/s.

Thus:

V=7.81 m2×2 m/s=15.62 m3/extsV = 7.81 \text{ m}^2 \times 2 \text{ m/s} = 15.62 \text{ m}^3/ ext{s}

To find the volume per minute, multiply by 60:

V=15.62 m3/exts×60 s=937.2 m3.V = 15.62 \text{ m}^3/ ext{s} \times 60 \text{ s} = 937.2 \text{ m}^3.

Rounding to 3 significant figures, the final answer is:

V937 m3.V \approx 937 \text{ m}^3.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;